Variations of the Catalan number from nonassociative binary operations

Jia Huang

University of Nebraska at Kearney *E-mail address*: huangj2@unk.edu

April 1, 2019

This is joint work with Nickolas Hein (Benedictine College), Madison Mickey (UNK) and Jianbai Xu (UNK)

Jia Huang (UNK)

Variations of the Catalan Number

April 1, 2019 1/30

• Let * be a binary operation on a set X. Let x_0, x_1, \ldots, x_n be X-valued indeterminates.

< □ > < 同 >

- Let * be a binary operation on a set X. Let x_0, x_1, \ldots, x_n be X-valued indeterminates.
- If * is associative then the expression $x_0 * x_1 * \cdots * x_n$ is unambiguous. Example: $x_0 + x_1 + \cdots + x_n$.

- Let * be a binary operation on a set X. Let x_0, x_1, \ldots, x_n be X-valued indeterminates.
- If * is associative then the expression $x_0 * x_1 * \cdots * x_n$ is unambiguous. Example: $x_0 + x_1 + \cdots + x_n$.
- If * is nonassociative then $x_0 * x_1 * \cdots * x_n$ depends on parentheses.

$$\begin{array}{l} ((x_0 - x_1) - x_2) - x_3 \\ (x_0 - x_1) - (x_2 - x_3) \\ (x_0 - (x_1 - x_2)) - x_3 \\ x_0 - ((x_1 - x_2) - x_3) \\ x_0 - (x_1 - (x_2 - x_3)) \end{array}$$

- Let * be a binary operation on a set X. Let x_0, x_1, \ldots, x_n be X-valued indeterminates.
- If * is associative then the expression x₀ * x₁ * · · · * x_n is unambiguous.
 Example: x₀ + x₁ + · · · + x_n.
- If * is nonassociative then $x_0 * x_1 * \cdots * x_n$ depends on parentheses.

$$\begin{array}{l} ((x_0 - x_1) - x_2) - x_3 \\ (x_0 - x_1) - (x_2 - x_3) \\ (x_0 - (x_1 - x_2)) - x_3 \\ x_0 - ((x_1 - x_2) - x_3) \\ x_0 - (x_1 - (x_2 - x_3)) \end{array}$$

• The number of ways to parenthesize $x_0 * x_1 * \cdots * x_n$ is the *Catalan* number $C_n := \frac{1}{n+1} {\binom{2n}{n}}$, e.g., $(C_n)_{n=0}^6 = (1, 1, 2, 5, 14, 42, 132)$.

< □ > < □ > < □ > < □ > < □ > < □ >

- Let * be a binary operation on a set X. Let x_0, x_1, \ldots, x_n be X-valued indeterminates.
- If * is associative then the expression x₀ * x₁ * · · · * x_n is unambiguous.
 Example: x₀ + x₁ + · · · + x_n.
- If * is nonassociative then $x_0 * x_1 * \cdots * x_n$ depends on parentheses.

$$\begin{array}{l} ((x_0 - x_1) - x_2) - x_3 \\ (x_0 - x_1) - (x_2 - x_3) \\ (x_0 - (x_1 - x_2)) - x_3 \\ x_0 - ((x_1 - x_2) - x_3) \\ x_0 - (x_1 - (x_2 - x_3)) \end{array}$$

- The number of ways to parenthesize $x_0 * x_1 * \cdots * x_n$ is the *Catalan* number $C_n := \frac{1}{n+1} {\binom{2n}{n}}$, e.g., $(C_n)_{n=0}^6 = (1, 1, 2, 5, 14, 42, 132)$.
- Some results from parenthesizing $x_0 * x_1 * \cdots * x_n$ may coincide.

< □ > < □ > < □ > < □ > < □ > < □ >

- Let * be a binary operation on a set X. Let x_0, x_1, \ldots, x_n be X-valued indeterminates.
- If * is associative then the expression x₀ * x₁ * · · · * x_n is unambiguous.
 Example: x₀ + x₁ + · · · + x_n.
- If * is nonassociative then $x_0 * x_1 * \cdots * x_n$ depends on parentheses.

$$((x_0-x_1)-x_2)-x_3 = x_0 - x_1 - x_2 - x_3$$

$$(x_0-x_1)-(x_2-x_3) = x_0 - x_1 - x_2 + x_3$$

$$(x_0-(x_1-x_2))-x_3 = x_0 - x_1 + x_2 - x_3$$

$$x_0-((x_1-x_2)-x_3) = x_0 - x_1 + x_2 + x_3$$

$$x_0-(x_1-(x_2-x_3)) = x_0 - x_1 + x_2 - x_3$$

- The number of ways to parenthesize $x_0 * x_1 * \cdots * x_n$ is the *Catalan* number $C_n := \frac{1}{n+1} {\binom{2n}{n}}$, e.g., $(C_n)_{n=0}^6 = (1, 1, 2, 5, 14, 42, 132)$.
- Some results from parenthesizing $x_0 * x_1 * \cdots * x_n$ may coincide.

(日)

• Parenthesizations of $x_0 * x_1 * \cdots * x_n$ are *equivalent* if they give the same function from X^{n+1} to X.

< □ > < 同 > < 回 > < 回 > < 回 >

- Parenthesizations of $x_0 * x_1 * \cdots * x_n$ are *equivalent* if they give the same function from X^{n+1} to X.
- Define $C_{*,n}$ to be the number of equivalence classes.

- Parenthesizations of $x_0 * x_1 * \cdots * x_n$ are *equivalent* if they give the same function from X^{n+1} to X.
- Define $C_{*,n}$ to be the number of equivalence classes.
- Define $C_{*,n}$ to be the largest size of an equivalence class.

- Parenthesizations of $x_0 * x_1 * \cdots * x_n$ are *equivalent* if they give the same function from X^{n+1} to X.
- Define $C_{*,n}$ to be the number of equivalence classes.
- Define $C_{*,n}$ to be the largest size of an equivalence class.

$$((x_0 - x_1) - x_2) - x_3 = x_0 - x_1 - x_2 - x_3 (x_0 - x_1) - (x_2 - x_3) = x_0 - x_1 - x_2 + x_3 (x_0 - (x_1 - x_2)) - x_3 = x_0 - x_1 + x_2 - x_3 x_0 - ((x_1 - x_2) - x_3) = x_0 - x_1 + x_2 + x_3 x_0 - (x_1 - (x_2 - x_3)) = x_0 - x_1 + x_2 - x_3$$

- Parenthesizations of x₀ * x₁ * · · · * x_n are *equivalent* if they give the same function from Xⁿ⁺¹ to X.
- Define $C_{*,n}$ to be the number of equivalence classes.
- Define $C_{*,n}$ to be the largest size of an equivalence class.

$$\begin{cases} (x_0 - x_1) - x_2) - x_3 = x_0 - x_1 - x_2 - x_3 \\ (x_0 - x_1) - (x_2 - x_3) = x_0 - x_1 - x_2 + x_3 \\ (x_0 - (x_1 - x_2)) - x_3 = x_0 - x_1 + x_2 - x_3 \\ x_0 - ((x_1 - x_2) - x_3) = x_0 - x_1 + x_2 + x_3 \\ x_0 - (x_1 - (x_2 - x_3)) = x_0 - x_1 + x_2 - x_3 \end{cases} \Rightarrow \begin{cases} C_3 = 5 \\ C_{-,3} = 4 \\ \widetilde{C}_{-,3} = 4 \\ \widetilde{C}_{-,3} = 2 \end{cases}$$

- Parenthesizations of $x_0 * x_1 * \cdots * x_n$ are *equivalent* if they give the same function from X^{n+1} to X.
- Define $C_{*,n}$ to be the number of equivalence classes.
- Define $C_{*,n}$ to be the largest size of an equivalence class.

$$\begin{pmatrix} (x_0 - x_1) - x_2 - x_3 = x_0 - x_1 - x_2 - x_3 \\ (x_0 - x_1) - (x_2 - x_3) = x_0 - x_1 - x_2 + x_3 \\ (x_0 - (x_1 - x_2)) - x_3 = x_0 - x_1 + x_2 - x_3 \\ x_0 - ((x_1 - x_2) - x_3) = x_0 - x_1 + x_2 + x_3 \\ x_0 - (x_1 - (x_2 - x_3)) = x_0 - x_1 + x_2 - x_3 \end{pmatrix} \Rightarrow \begin{cases} C_3 = 5 \\ C_{-,3} = 4 \\ \widetilde{C}_{-,3} = 4 \\ \widetilde{C}_{-,3} = 2 \end{cases}$$

$$ullet$$
 In general, $1\leq {\sf C}_{*,n}\leq {\sf C}_n$ and $1\leq \widetilde{{\sf C}}_{*,n}\leq {\sf C}_n.$

- Parenthesizations of $x_0 * x_1 * \cdots * x_n$ are *equivalent* if they give the same function from X^{n+1} to X.
- Define $C_{*,n}$ to be the number of equivalence classes.
- Define $C_{*,n}$ to be the largest size of an equivalence class.

$$\begin{pmatrix} (x_0 - x_1) - x_2) - x_3 = x_0 - x_1 - x_2 - x_3 \\ (x_0 - x_1) - (x_2 - x_3) = x_0 - x_1 - x_2 + x_3 \\ (x_0 - (x_1 - x_2)) - x_3 = x_0 - x_1 + x_2 - x_3 \\ x_0 - ((x_1 - x_2) - x_3) = x_0 - x_1 + x_2 + x_3 \\ x_0 - (x_1 - (x_2 - x_3)) = x_0 - x_1 + x_2 - x_3 \end{pmatrix} \Rightarrow \begin{cases} C_3 = 5 \\ C_{-,3} = 4 \\ \widetilde{C}_{-,3} = 2 \end{cases}$$

In general, 1 ≤ C_{*,n} ≤ C_n and 1 ≤ C̃_{*,n} ≤ C_n.
C_{*,n} = 1, ∀n ≥ 0 ⇔ * is associative ⇔ C̃_{*,n} = C_n, ∀n ≥ 0.

- Parenthesizations of $x_0 * x_1 * \cdots * x_n$ are *equivalent* if they give the same function from X^{n+1} to X.
- Define $C_{*,n}$ to be the number of equivalence classes.
- Define $C_{*,n}$ to be the largest size of an equivalence class.

$$\begin{pmatrix} (x_0 - x_1) - x_2 - x_3 = x_0 - x_1 - x_2 - x_3 \\ (x_0 - x_1) - (x_2 - x_3) = x_0 - x_1 - x_2 + x_3 \\ (x_0 - (x_1 - x_2)) - x_3 = x_0 - x_1 + x_2 - x_3 \\ x_0 - ((x_1 - x_2) - x_3) = x_0 - x_1 + x_2 + x_3 \\ x_0 - (x_1 - (x_2 - x_3)) = x_0 - x_1 + x_2 - x_3 \end{pmatrix} \Rightarrow \begin{cases} C_3 = 5 \\ C_{-,3} = 4 \\ \widetilde{C}_{-,3} = 4 \\ \widetilde{C}_{-,3} = 2 \end{cases}$$

- In general, $1 \leq C_{*,n} \leq C_n$ and $1 \leq \widetilde{C}_{*,n} \leq C_n$.
- $C_{*,n} = 1$, $\forall n \ge 0 \Leftrightarrow *$ is associative $\Leftrightarrow \widetilde{C}_{*,n} = C_n$, $\forall n \ge 0$.
- Thus $C_{*,n}$ and $\widetilde{C}_{*,n}$ measure how far * is away from being associative.

Fact

Parenthesizations of $x_0 * x_1 * \cdots * x_n \leftrightarrow (full)$ binary trees with n + 1 leaves

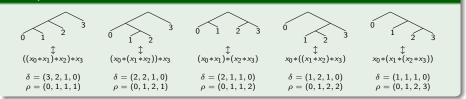
< □ > < 同 > < 回 > < 回 > < 回 >

Binary trees

Fact

Parenthesizations of $x_0 * x_1 * \cdots * x_n \leftrightarrow (full)$ binary trees with n+1 leaves

Example



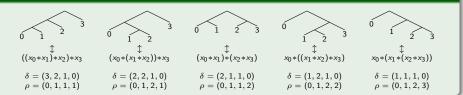
< □ > < 同 > < 回 > < 回 > < 回 >

Binary trees

Fact

Parenthesizations of $x_0 * x_1 * \cdots * x_n \leftrightarrow (full)$ binary trees with n + 1 leaves

Example



Definition

- Let $\mathcal{T}_n := \{ \text{binary trees with } n+1 \text{ leaves} \}$. If $t, t' \in \mathcal{T}_n$ correspond to equivalent paranthesizations of $x_0 * x_1 * \cdots * x_n$ then define $t \sim_* t'$.
- The left/right depth δ_i(t)/ρ_i(t) of leaf i in t ∈ T_n is the number of edges to the left/right in the path from the root of t down to i.

Definition

• A binary operation * is *k*-associative if

$$(x_0 * \cdots * x_k) * x_{k+1} = x_0 * (x_1 * \cdots * x_{k+1})$$

where the operations in parentheses are performed left to right.

Definition

• A binary operation * is *k*-associative if

$$(x_0 * \cdots * x_k) * x_{k+1} = x_0 * (x_1 * \cdots * x_{k+1})$$

where the operations in parentheses are performed left to right.

• For any operation * satisfying exactly the *k*-associativity, we write $C_{k,n} := C_{*,n}$ (*k*-modular Catalan number) and $\widetilde{C}_{k,n} := \widetilde{C}_{*,n}$.

Definition

• A binary operation * is *k*-associative if

$$(x_0 * \cdots * x_k) * x_{k+1} = x_0 * (x_1 * \cdots * x_{k+1})$$

where the operations in parentheses are performed left to right.

• For any operation * satisfying exactly the k-associativity, we write $C_{k,n} := C_{*,n}$ (k-modular Catalan number) and $\widetilde{C}_{k,n} := \widetilde{C}_{*,n}$.

Example (Generalization of "+" (k = 1) and "-" (k = 2))

Let $\omega := e^{2\pi i/k}$ be a primitive *k*th root of unity. Then * is *k*-associative if $a * b := \omega a + b$, $\forall a, b \in \mathbb{C}$.

イロト 不得下 イヨト イヨト 二日

Definition

• A binary operation * is *k*-associative if

$$(x_0 * \cdots * x_k) * x_{k+1} = x_0 * (x_1 * \cdots * x_{k+1})$$

where the operations in parentheses are performed left to right.

• For any operation * satisfying exactly the k-associativity, we write $C_{k,n} := C_{*,n}$ (k-modular Catalan number) and $\widetilde{C}_{k,n} := \widetilde{C}_{*,n}$.

Example (Generalization of "+" (k = 1) and "-" (k = 2))

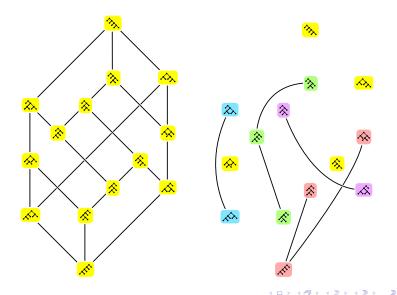
Let $\omega := e^{2\pi i/k}$ be a primitive *k*th root of unity. Then * is *k*-associative if $a * b := \omega a + b$, $\forall a, b \in \mathbb{C}$.

Observation (A generalization of the Tamari order)

The k-associativity gives the k-associative order on binary trees.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tamari order and 2-associative order on \mathcal{T}_4



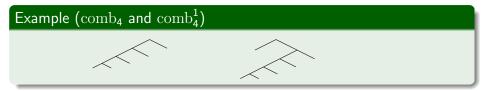
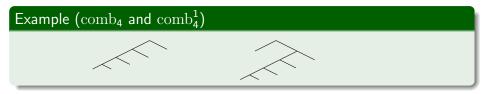
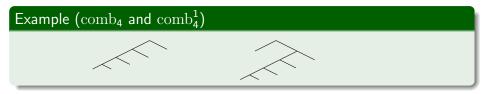


Image: A match a ma



Theorem (Hein and H. 2017)

 A binary tree is maximal (or minimal) in the k-associative order if and only if it avoids the binary tree comb_{k+1} (or comb_k¹) as a subtree.



Theorem (Hein and H. 2017)

- A binary tree is maximal (or minimal) in the k-associative order if and only if it avoids the binary tree comb_{k+1} (or comb_k¹) as a subtree.
- Each component in k-associative order has a unique minimal tree.

Theorem (Hein and H. 2017)

- A binary tree is maximal (or minimal) in the k-associative order if and only if it avoids the binary tree comb_{k+1} (or comb_k¹) as a subtree.
- Each component in k-associative order has a unique minimal tree.

Theorem (Hein and H. 2017)

Two binary trees t and t' correspond to equivalent parenthesizations if and only if $\delta_i(t) \equiv \delta_i(t') \pmod{k}$ for all i.

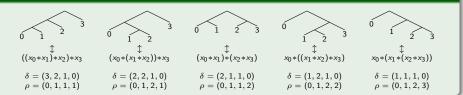
< □ > < 同 > < 回 > < 回 > < 回 >

Binary trees

Fact

Parenthesizations of $x_0 * x_1 * \cdots * x_n \leftrightarrow (full)$ binary trees with n + 1 leaves

Example



Definition

- Let $\mathcal{T}_n := \{ \text{binary trees with } n+1 \text{ leaves} \}$. If $t, t' \in \mathcal{T}_n$ correspond to equivalent paranthesizations of $x_0 * x_1 * \cdots * x_n$ then define $t \sim_* t'$.
- The left/right depth δ_i(t)/ρ_i(t) of leaf i in t ∈ T_n is the number of edges to the left/right in the path from the root of t down to i.

Connections to other objects

Fact

There are well-known bijections among many families of Catalan objects.

- **→** ∃ →

Fact

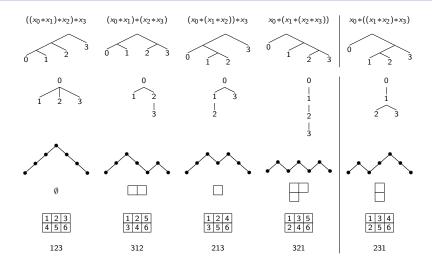
There are well-known bijections among many families of Catalan objects.

Proposition (Hein and H. 2017)

For $n \ge 0$ and $k \ge 1$, $C_{k,n}$ enumerates the following:

- the set of binary trees with n + 1 leaves avoiding $\operatorname{comb}_{k}^{1}$,
- 2 plane trees with n non-root nodes, each of degree less than k,
- Oyck paths of length 2n avoiding DU^k (a down-step immediately followed by k up-steps),
- partitions bounded by (n − 1, n − 2,..., 1,0) with each positive part occurring fewer than k times,
- 2 × n standard Young tableaux which contain no list of k consecutive numbers in the top row other than 1, 2, ..., ℓ for any $\ell \in [n]$,
- permutations of [n] avoiding 1-3-2 and $23 \cdots (k+1)1$.

Examples of Catalan objects



The objects on each row are counted by the Catalan number C_3 . The rightmost column gives objects excluded by $C_{2,3}$.

Theorem (Hein and H. 2017)

For $k, n \geq 1$, we have

$$C_{k,n} = \sum_{\substack{\lambda \subseteq (k-1)^n \\ |\lambda| < n}} \frac{n - |\lambda|}{n} m_{\lambda}(1^n) = \sum_{\substack{0 \le j \le (n-1)/k}} \frac{(-1)^j}{n} \binom{n}{j} \binom{2n - jk}{n+1},$$

-

• • • • • • • • • • • •

Theorem (Hein and H. 2017)

For $k, n \geq 1$, we have

$$C_{k,n} = \sum_{\substack{\lambda \subseteq (k-1)^n \\ |\lambda| < n}} \frac{n - |\lambda|}{n} m_{\lambda}(1^n) = \sum_{\substack{0 \le j \le (n-1)/k}} \frac{(-1)^j}{n} \binom{n}{j} \binom{2n - jk}{n+1},$$

$$\widetilde{C}_{k,n} = \sum_{0 \le j \le n/k} \frac{n-jk}{n} \binom{n+j-1}{j}.$$

-

• • • • • • • • • • • •

Theorem (Hein and H. 2017)

For $k, n \ge 1$, we have

$$C_{k,n} = \sum_{\substack{\lambda \subseteq (k-1)^n \\ |\lambda| < n}} \frac{n - |\lambda|}{n} m_{\lambda}(1^n) = \sum_{\substack{0 \le j \le (n-1)/k \\ n < 1}} \frac{(-1)^j}{n} \binom{n}{j} \binom{2n - jk}{n+1},$$
$$\widetilde{C}_{k,n} = \sum_{\substack{0 \le j \le n/k \\ n < 1}} \frac{n - jk}{n} \binom{n+j-1}{j}.$$

Moreover, the number of components in k-associative order with size $C_{k,n}$ is C_m , where m is the least positive integer congruent to n modulo k.

Theorem (Hein and H. 2017)

For $k, n \ge 1$, we have

$$C_{k,n} = \sum_{\substack{\lambda \subseteq (k-1)^n \\ |\lambda| < n}} \frac{n - |\lambda|}{n} m_{\lambda}(1^n) = \sum_{\substack{0 \le j \le (n-1)/k \\ n < 1}} \frac{(-1)^j}{n} \binom{n}{j} \binom{2n - jk}{n+1},$$
$$\widetilde{C}_{k,n} = \sum_{\substack{0 \le j \le n/k \\ n < 1}} \frac{n - jk}{n} \binom{n+j-1}{j}.$$

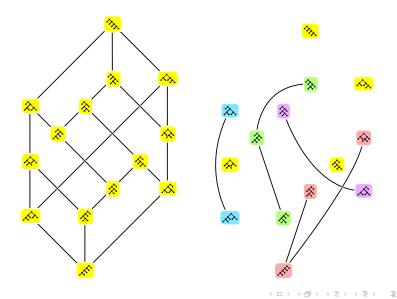
Moreover, the number of components in k-associative order with size $C_{k,n}$ is C_m , where m is the least positive integer congruent to n modulo k.

Proof.

One proof uses generating functions and Lagrange inversion. The other proof is more direct, using Dyck paths (and sign-reversing involutions).

Jia Huang (UNK)

Tamari order and 2-associative order on \mathcal{T}_4



Exa	ample	e (C	- ∙k,n	for	n <u><</u>	≤ 10	and	$k \leq$	8)				
	n	0	1	2	3	4	5	6	7	8	9	10	
-	$C_{1,n}$	1	1	1	1	1	1	1	1	1	1	1	A000012
	$C_{2,n}$	1	1	2	4	8	16	32	64	128	256	512	A011782
	$C_{3,n}$	1	1	2	5	13	35	96	267	750	2123	6046	A005773
	$C_{4,n}$	1	1	2	5	14	41	124	384	1210	3865	12482	A159772
	$C_{5,n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
	C _{6,n}	1	1	2	5	14	42	132	428	1420	4796	16432	new
	$C_{7,n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
	C _{8,n}	1	1	2	5	14	42	132	429	1430	4861	16784	new
	Cn	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

Example ($C_{k,n}$ for $n \leq 10$ and $k \leq 8$)

	n	0	1	2	3	4	5	6	7	8	9	10	
_	<i>C</i> _{1,<i>n</i>}	1	1	1	1	1	1	1	1	1	1	1	A000012
	$C_{2,n}$	1	1	2	4	8	16	32	64	128	256	512	<u>A011782</u>
	$C_{3,n}$	1	1	2	5	13	35	96	267	750	2123	6046	<u>A005773</u>
	$C_{4,n}$	1	1	2	5	14	41	124	384	1210	3865	12482	<u>A159772</u>
	$C_{5,n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
	$C_{6,n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
	$C_{7,n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
	C _{8,n}	1	1	2	5	14	42	132	429	1430	4861	16784	new
_	Cn	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

•
$$\lim_{n\to\infty} C_{n+1}/C_n = 4$$
, $\lim_{n\to\infty} C_{k,n+1}/C_{k,n} = ?$

Example ($C_{k,n}$ for $n \leq 10$ and $k \leq 8$)

	n	0	1	2	3	4	5	6	7	8	9	10	
_	$C_{1,n}$	1	1	1	1	1	1	1	1	1	1	1	A000012
	$C_{2,n}$	1	1	2	4	8	16	32	64	128	256	512	<u>A011782</u>
	$C_{3,n}$	1	1	2	5	13	35	96	267	750	2123	6046	<u>A005773</u>
	$C_{4,n}$	1	1	2	5	14	41	124	384	1210	3865	12482	<u>A159772</u>
	$C_{5,n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
	$C_{6,n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
	$C_{7,n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
	C _{8,n}	1	1	2	5	14	42	132	429	1430	4861	16784	new
_	Cn	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

•
$$\lim_{n\to\infty} C_{n+1}/C_n = 4$$
, $\lim_{n\to\infty} C_{k,n+1}/C_{k,n} = ?$

• There is a formula
$$C_{3,n} = \sum_{0 \le i \le n-1} \binom{n-1}{i} \binom{i}{\lfloor i/2 \rfloor}$$
 obtained by

Example ($C_{k,n}$ for $n \leq 10$ and $k \leq 8$)

	n	0	1	2	3	4	5	6	7	8	9	10	
_	$C_{1,n}$	1	1	1	1	1	1	1	1	1	1	1	A000012
	$C_{2,n}$	1	1	2	4	8	16	32	64	128	256	512	<u>A011782</u>
	C _{3,n}	1	1	2	5	13	35	96	267	750	2123	6046	<u>A005773</u>
	$C_{4,n}$	1	1	2	5	14	41	124	384	1210	3865	12482	<u>A159772</u>
	$C_{5,n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
	$C_{6,n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
	C _{7,n}	1	1	2	5	14	42	132	429	1429	4851	16718	new
	C _{8,n}	1	1	2	5	14	42	132	429	1430	4861	16784	new
_	Cn	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

- $\lim_{n\to\infty} C_{n+1}/C_n = 4$, $\lim_{n\to\infty} C_{k,n+1}/C_{k,n} = ?$
- There is a formula $C_{3,n} = \sum_{0 \le i \le n-1} \binom{n-1}{i} \binom{i}{\lfloor i/2 \rfloor}$ obtained by
 - Gouyou-Beauchamps and Viennot in studies of directed animals, and

Example ($C_{k,n}$ for $n \leq 10$ and $k \leq 8$)

	n	0	1	2	3	4	5	6	7	8	9	10	
_	$C_{1,n}$	1	1	1	1	1	1	1	1	1	1	1	A000012
	$C_{2,n}$	1	1	2	4	8	16	32	64	128	256	512	<u>A011782</u>
	$C_{3,n}$	1	1	2	5	13	35	96	267	750	2123	6046	<u>A005773</u>
	$C_{4,n}$	1	1	2	5	14	41	124	384	1210	3865	12482	<u>A159772</u>
	$C_{5,n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
	$C_{6,n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
	$C_{7,n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
	C _{8,n}	1	1	2	5	14	42	132	429	1430	4861	16784	new
_	Cn	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

- $\lim_{n\to\infty} C_{n+1}/C_n = 4$, $\lim_{n\to\infty} C_{k,n+1}/C_{k,n} = ?$
- There is a formula $C_{3,n} = \sum_{0 \le i \le n-1} \binom{n-1}{i} \binom{i}{\lfloor i/2 \rfloor}$ obtained by
 - Gouyou-Beauchamps and Viennot in studies of directed animals, and
 - Panyushev using affine Weyl group of the Lie algebra \mathfrak{sp}_{2n} or \mathfrak{so}_{2n+1} .

Example ($C_{k,n}$ for $n \leq 10$ and $k \leq 8$)

	n	0	1	2	3	4	5	6	7	8	9	10	
_	$C_{1,n}$	1	1	1	1	1	1	1	1	1	1	1	A000012
	$C_{2,n}$	1	1	2	4	8	16	32	64	128	256	512	<u>A011782</u>
	$C_{3,n}$	1	1	2	5	13	35	96	267	750	2123	6046	<u>A005773</u>
	$C_{4,n}$	1	1	2	5	14	41	124	384	1210	3865	12482	<u>A159772</u>
	$C_{5,n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
	$C_{6,n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
	$C_{7,n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
	C _{8,n}	1	1	2	5	14	42	132	429	1430	4861	16784	new
_	Cn	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

Question

• $\lim_{n\to\infty} C_{n+1}/C_n = 4$, $\lim_{n\to\infty} C_{k,n+1}/C_{k,n} = ?$

• There is a formula $C_{3,n} = \sum_{0 \le i \le n-1} \binom{n-1}{i} \binom{i}{\lfloor i/2 \rfloor}$ obtained by

- Gouyou-Beauchamps and Viennot in studies of directed animals, and
- Panyushev using affine Weyl group of the Lie algebra \mathfrak{sp}_{2n} or \mathfrak{so}_{2n+1} .

Is there a generalization of this formula from k = 3 to $k \ge 4$?

Definition

• Define
$$a * b := \omega a + \eta b$$
 for $a, b \in \mathbb{C}$, where $\omega := e^{2\pi i/k}$ and $\eta := e^{2\pi i/\ell}$. When $k = \ell = 2$ this gives $a \ominus b := -a - b$.

イロト イヨト イヨト イヨト

Definition

- Define $a * b := \omega a + \eta b$ for $a, b \in \mathbb{C}$, where $\omega := e^{2\pi i/k}$ and $\eta := e^{2\pi i/\ell}$. When $k = \ell = 2$ this gives $a \ominus b := -a b$.
- Let $C_{\ominus,n,r}$ be the number of distinct results from $x_0 \ominus x_1 \ominus \cdots \ominus x_n$ with exactly r plus signs. Let $C_{\ominus,n} := \sum_{0 \le r \le n+1} C_{\ominus,n,r}$.

イロト イポト イヨト イヨト 二日

Definition

- Define $a * b := \omega a + \eta b$ for $a, b \in \mathbb{C}$, where $\omega := e^{2\pi i/k}$ and $\eta := e^{2\pi i/\ell}$. When $k = \ell = 2$ this gives $a \ominus b := -a b$.
- Let $C_{\ominus,n,r}$ be the number of distinct results from $x_0 \ominus x_1 \ominus \cdots \ominus x_n$ with exactly r plus signs. Let $C_{\ominus,n} := \sum_{0 \le r \le n+1} C_{\ominus,n,r}$.

Theorem (H., Mickey, and Xu 2017)

• If
$$n \ge 1$$
 and $0 \le r \le n+1$ then

$$C_{\ominus,n,r} = \begin{cases} \binom{n+1}{r}, & \text{if } n+r \equiv 1 \pmod{3} \text{ and } n \neq 2r-2, \\ \binom{n+1}{r} - 1, & \text{if } n+r \equiv 1 \pmod{3} \text{ and } n = 2r-2, \\ 0, & \text{if } n+r \not\equiv 1 \pmod{3}. \end{cases}$$

A truncated/modified Pascal Triangle

Ε	xample	(C_{\ominus})	, <i>n</i> , <i>r</i> f	or <i>n</i> <u>s</u>	\leq 10 a	and O	$\leq r \leq$	$\leq n+1$	1)				
	r	0	1	2	3	4	5	6	7	8	9	10	11
_	$C_{\ominus,0,r}$		1										
	$\begin{array}{c} C_{\ominus,1,r} \\ C_{\ominus,2,r} \end{array}$	1											
	$C_{\ominus,2,r}$			2									
_	$C_{\ominus,3,r}$		4			1							
_	$C_{\ominus,4,r}$	1			9								
	$C_{\ominus,5,r}$			15			6						
	<i>C</i> ⊖,6, <i>r</i>		7			34			1				
	<i>C</i> ⊖,7, <i>r</i>	1			56			28					
	<i>C</i> ⊖,8, <i>r</i>			36			125			9			
	$C_{\ominus,9,r}$		10			210			120			1	
	$C_{\ominus,10,r}$	1			165			461			55		

Definition

- Define $a * b := \omega a + \eta b$ for $a, b \in \mathbb{C}$, where $\omega := e^{2\pi i/k}$ and $\eta := e^{2\pi i/\ell}$. When $k = \ell = 2$ this gives $a \ominus b := -a b$.
- Let $C_{\ominus,n,r}$ be the number of distinct results from $x_0 \ominus x_1 \ominus \cdots \ominus x_n$ with exactly r plus signs. Let $C_{\ominus,n} := \sum_{0 \le r \le n+1} C_{\ominus,n,r}$.

Theorem (H., Mickey, and Xu 2017)

• If $n \ge 1$ and $0 \le r \le n+1$ then

$$C_{\ominus,n,r} = \begin{cases} \binom{n+1}{r}, & \text{if } n+r \equiv 1 \pmod{3} \text{ and } n \neq 2r-2, \\ \binom{n+1}{r} - 1, & \text{if } n+r \equiv 1 \pmod{3} \text{ and } n = 2r-2, \\ 0, & \text{if } n+r \not\equiv 1 \pmod{3}. \end{cases}$$

• For
$$n \ge 1$$
 we have $C_{\ominus,n} = \begin{cases} rac{2^{n+1}-1}{3}, & \text{if } n \text{ is odd}; \\ rac{2^{n+1}-2}{3}, & \text{if } n \text{ is even}. \end{cases}$

Definition

The sequence A000975 $(A_n : n \ge 1) = (1, 2, 5, 10, 21, 42, 85, ...)$ has many equivalent characterizations, such as the following.

Definition

The sequence A000975 $(A_n : n \ge 1) = (1, 2, 5, 10, 21, 42, 85, ...)$ has many equivalent characterizations, such as the following.

• $A_1 = 1$, $A_{n+1} = 2A_n$ if n is odd, and $A_{n+1} = 2A_n + 1$ if n is even.

< (17) > < (17) > <

Definition

The sequence A000975 $(A_n : n \ge 1) = (1, 2, 5, 10, 21, 42, 85, ...)$ has many equivalent characterizations, such as the following.

- $A_1 = 1$, $A_{n+1} = 2A_n$ if *n* is odd, and $A_{n+1} = 2A_n + 1$ if *n* is even.
- A_n is the integer with an alternating binary representation of length *n*. $(1 = 1_2, 2 = 10_2, 5 = 101_2, 10 = 1010_2, 21 = 10101_2, ...)$

< ロト < 同ト < ヨト < ヨト

Definition

The sequence A000975 $(A_n : n \ge 1) = (1, 2, 5, 10, 21, 42, 85, ...)$ has many equivalent characterizations, such as the following.

• $A_1 = 1$, $A_{n+1} = 2A_n$ if *n* is odd, and $A_{n+1} = 2A_n + 1$ if *n* is even.

• A_n is the integer with an alternating binary representation of length n. (1 = 1₂, 2 = 10₂, 5 = 101₂, 10 = 1010₂, 21 = 10101₂, ...)

•
$$A_n = \left\lfloor \frac{2^{n+1}}{3} \right\rfloor = \frac{2^{n+2}-3-(-1)^n}{6} = \begin{cases} \frac{2^{n+1}-1}{3}, & \text{if } n \text{ is odd;} \\ \frac{2^{n+1}-2}{3}, & \text{if } n \text{ is even.} \end{cases}$$

< □ > < 同 > < 回 > < 回 > < 回 >

Definition

The sequence A000975 $(A_n : n \ge 1) = (1, 2, 5, 10, 21, 42, 85, ...)$ has many equivalent characterizations, such as the following.

- $A_1 = 1$, $A_{n+1} = 2A_n$ if *n* is odd, and $A_{n+1} = 2A_n + 1$ if *n* is even.
- A_n is the integer with an alternating binary representation of length n. (1 = 1₂, 2 = 10₂, 5 = 101₂, 10 = 1010₂, 21 = 10101₂, ...)

•
$$A_n = \left\lfloor \frac{2^{n+1}}{3} \right\rfloor = \frac{2^{n+2}-3-(-1)^n}{6} = \begin{cases} \frac{2^{n+1}-1}{3}, & \text{if } n \text{ is odd;} \\ \frac{2^{n+1}-2}{3}, & \text{if } n \text{ is even.} \end{cases}$$

• *A_n* is the number of moves to solve the *n*-ring Chinese Rings puzzle. *n* = 4: 0000-0001-0011-0010-0111-0101-0100-1100-1101-1111

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

The sequence A000975 $(A_n : n \ge 1) = (1, 2, 5, 10, 21, 42, 85, ...)$ has many equivalent characterizations, such as the following.

- $A_1 = 1$, $A_{n+1} = 2A_n$ if *n* is odd, and $A_{n+1} = 2A_n + 1$ if *n* is even.
- A_n is the integer with an alternating binary representation of length n. (1 = 1₂, 2 = 10₂, 5 = 101₂, 10 = 1010₂, 21 = 10101₂, ...)

•
$$A_n = \left\lfloor \frac{2^{n+1}}{3} \right\rfloor = \frac{2^{n+2}-3-(-1)^n}{6} = \begin{cases} \frac{2^{n+1}-1}{3}, & \text{if } n \text{ is odd;} \\ \frac{2^{n+1}-2}{3}, & \text{if } n \text{ is even.} \end{cases}$$

• *A_n* is the number of moves to solve the *n*-ring Chinese Rings puzzle. *n* = 4: 0000-0001-0011-0010-0111-0101-0100-1100-1101-1111

- Bijections between different objects enumerated by A_n?
- Any formula for $\widetilde{C}_{\ominus,n}$? $(1, 1, 1, 2, 3, 5, 9, 16, 28, 54, 99, \ldots)$

We can define a * b := ωa + ηb for a, b in a ring R, where ω, η ∈ R satisfy ω^k = 1 and η^ℓ = 1. But there is interference between ω and η.

- We can define a * b := ωa + ηb for a, b in a ring R, where ω, η ∈ R satisfy ω^k = 1 and η^ℓ = 1. But there is interference between ω and η.
- Define f * g := xf + yg for all $f, g \in \mathbb{C}[x, y]/(x^{d+k} x^d, y^{e+\ell} y^e)$.

- We can define a * b := ωa + ηb for a, b in a ring R, where ω, η ∈ R satisfy ω^k = 1 and η^ℓ = 1. But there is interference between ω and η.
- Define f * g := xf + yg for all $f, g \in \mathbb{C}[x, y]/(x^{d+k} x^d, y^{e+\ell} y^e)$.
- A finite semigroup generated by a single element x can be written as {x, x²,..., x^{d+k-1}} with relation x^{d+k} = x^d for some positive integers d and k which are called the *index* and *period* of x.

- We can define a * b := ωa + ηb for a, b in a ring R, where ω, η ∈ R satisfy ω^k = 1 and η^ℓ = 1. But there is interference between ω and η.
- Define f * g := xf + yg for all $f, g \in \mathbb{C}[x, y]/(x^{d+k} x^d, y^{e+\ell} y^e)$.
- A finite semigroup generated by a single element x can be written as {x, x²,..., x^{d+k-1}} with relation x^{d+k} = x^d for some positive integers d and k which are called the *index* and *period* of x.
- A parenthesization of $f_0 * \cdots * f_n$ corresponding to $t \in \mathcal{T}_n$ equals $x^{\delta_0(t)}y^{\rho_0(t)}f_0 + \cdots + x^{\delta_n(t)}y^{\rho_n(t)}f_n.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We can define a * b := ωa + ηb for a, b in a ring R, where ω, η ∈ R satisfy ω^k = 1 and η^ℓ = 1. But there is interference between ω and η.
- Define f * g := xf + yg for all $f, g \in \mathbb{C}[x, y]/(x^{d+k} x^d, y^{e+\ell} y^e)$.
- A finite semigroup generated by a single element x can be written as {x, x²,..., x^{d+k-1}} with relation x^{d+k} = x^d for some positive integers d and k which are called the *index* and *period* of x.
- A parenthesization of $f_0 * \cdots * f_n$ corresponding to $t \in \mathcal{T}_n$ equals $x^{\delta_0(t)}y^{\rho_0(t)}f_0 + \cdots + x^{\delta_n(t)}y^{\rho_n(t)}f_n.$
- Let $C_{k,\ell,n}^{d,e} := C_{*,n}$ and $\widetilde{C}_{k,\ell,n}^{d,e} := \widetilde{C}_{*,n}$ be, respectively, the number of equivalence classes and the largest size of an equivalence class of parenthesizations of $f_0 * f_1 * \cdots * f_n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Hein and H. 2019+)

Let $k = \ell = 1$ and $t, t' \in T_n$. Then $t \sim_* t'$ if and only if t be obtained from t' by a finite sequence of moves, each of which replaces the maximal subtree rooted at a node of left depth $\delta \ge d - 1$ and right depth $\rho \ge e - 1$ with a binary tree containing the same number of leaves.

< ロト < 同ト < ヨト < ヨト

Theorem (Hein and H. 2019+)

Let $k = \ell = 1$ and $t, t' \in T_n$. Then $t \sim_* t'$ if and only if t be obtained from t' by a finite sequence of moves, each of which replaces the maximal subtree rooted at a node of left depth $\delta \ge d - 1$ and right depth $\rho \ge e - 1$ with a binary tree containing the same number of leaves.

Theorem (Hein and H. 2019+)

• If n < d + e then $\widetilde{C}_n^{d,e} = 1$. If $n \ge d + e$ then $\widetilde{C}_n^{d,e} = n + 2 - d - e$ and the number of equivalence classes with this size is $\binom{d+e-2}{d-1}$.

Theorem (Hein and H. 2019+)

Let $k = \ell = 1$ and $t, t' \in T_n$. Then $t \sim_* t'$ if and only if t be obtained from t' by a finite sequence of moves, each of which replaces the maximal subtree rooted at a node of left depth $\delta \ge d - 1$ and right depth $\rho \ge e - 1$ with a binary tree containing the same number of leaves.

Theorem (Hein and H. 2019+)

- If n < d + e then C̃^{d,e}_n = 1. If n ≥ d + e then C̃^{d,e}_n = n + 2 d e and the number of equivalence classes with this size is (^{d+e-2}_{d-1}).
- The size of an arbitrary equivalence class is a product of Catalan numbers C_{m₀−1} ··· C_{m_r−1} with m₀ + ··· + m_r = n + 1.

Theorem (Hein and H. 2019+)

Let $k = \ell = 1$ and $t, t' \in T_n$. Then $t \sim_* t'$ if and only if t be obtained from t' by a finite sequence of moves, each of which replaces the maximal subtree rooted at a node of left depth $\delta \ge d - 1$ and right depth $\rho \ge e - 1$ with a binary tree containing the same number of leaves.

Theorem (Hein and H. 2019+)

- If n < d + e then $\widetilde{C}_n^{d,e} = 1$. If $n \ge d + e$ then $\widetilde{C}_n^{d,e} = n + 2 d e$ and the number of equivalence classes with this size is $\binom{d+e-2}{d-1}$.
- The size of an arbitrary equivalence class is a product of Catalan numbers $C_{m_0-1} \cdots C_{m_r-1}$ with $m_0 + \cdots + m_r = n+1$.
- The generating function $C^{d,e}(x) := \sum_{n \ge 0} C_n^{d,e} x^{n+1}$ satisfies

$$C^{d,e}(x) = x + C^{d-1,e}(x)C^{d,e-1}(x)$$

where a zero in the supscript is treated as one.

The case
$$k = \ell = e = 1$$

Corollary (Hein and H. 2019+)

The generating function $C^{d}(x) := C^{d,1}(x)$ satisfies $C^{d}(x) = \frac{x}{1 - C^{d-1}(x)}$. Thus the number $C_{n}^{d} := C_{n}^{d,1}$ is given by OEIS A080934.

イロト 不得下 イヨト イヨト 二日

The case
$$k = \ell = e = 1$$

Corollary (Hein and H. 2019+)

The generating function $C^{d}(x) := C^{d,1}(x)$ satisfies $C^{d}(x) = \frac{x}{1 - C^{d-1}(x)}$. Thus the number $C_{n}^{d} := C_{n}^{d,1}$ is given by OEIS A080934.

Example

$$C^{1}(x) = \frac{x}{1-x}, \ C^{2}(x) = \frac{x}{1-\frac{x}{1-x}} = \frac{x(1-x)}{1-2x}, \ C^{3}(x) = \frac{x}{1-\frac{x}{1-\frac{x}{1-x}}} = \frac{x(1-2x)}{1-3x+x^{2}}$$

n	1	2	3	4	5	6	7	n
C_n^1	1	1	1	1	1	1	1	1
C_n^2	1	2	4	8	16	32	64	2^{n-1}
C_n^3	1	2	5	13	34	89	233	F_{2n-1}
C_n^4	1	2	5	14	41	122	365	$\frac{1}{2}(1+3^{n-1})$
Cn	1	2	5	14	42	132	429	$\frac{1}{n+1}\binom{2n}{n}$

Theorem (Kreweras 1970)

The number of Dyck paths of length 2n with height at most d is C_n^d and

$$C^d(x) = \frac{xF_{d+1}(x)}{F_{d+2}(x)}$$

where $F_i(x) := i$ for i = 0, 1, and $F_n(x) := F_{n-1}(x) - xF_{n-2}(x)$, $n \ge 2$.

Theorem (Kreweras 1970)

The number of Dyck paths of length 2n with height at most d is C_n^d and

$$C^d(x) = \frac{xF_{d+1}(x)}{F_{d+2}(x)}$$

where $F_i(x) := i$ for i = 0, 1, and $F_n(x) := F_{n-1}(x) - xF_{n-2}(x)$, $n \ge 2$.

Theorem (de Bruijn–Knuth–Rice 1972)

The number of plane trees with n + 1 nodes of depth at most d is

$$C_n^d = \frac{2^{2n+1}}{d+2} \sum_{1 \le j \le d+1} \sin^2(j\pi/(d+2)) \cos^{2n}(j\pi/(d+2)).$$

Moreover, $F_n(x) = \sum_{0 \le i \le (n-1)/2} {\binom{n-1-i}{i}} (-x)^i, \quad \forall n \ge 1.$

A D N A B N A B N A B N

Recent results on C_n^d

Theorem (Andrews–Krattenthaler–Orsina–Papi 2002)

The number of ad-nilpotent ideals of the Borel subalgebra \mathfrak{b} of the Lie algebra $\mathfrak{sl}_n(\mathbb{C})$ with order at most d-1 is

$$C_n^d = \sum_{i \in \mathbb{Z}} \frac{2i(d+2)+1}{2n+1} {2n+1 \choose n-i(d+2)}$$

= det $\left[{i - \max\{-1, j-d\} \atop j-i+1} \right]_{i,j=1}^{n-1}$
= $\sum_{0=i_0 \le i_1 \le \dots \le i_{d-1} \le i_d = n} \prod_{0 \le j \le d-2} {i_{j+2} - i_j - 1 \choose i_{j+1} - i_j}.$

Recent results on C_n^d

Theorem (Andrews–Krattenthaler–Orsina–Papi 2002)

The number of ad-nilpotent ideals of the Borel subalgebra b of the Lie algebra $\mathfrak{sl}_n(\mathbb{C})$ with order at most d-1 is

$$C_n^d = \sum_{i \in \mathbb{Z}} \frac{2i(d+2)+1}{2n+1} \binom{2n+1}{n-i(d+2)}$$

= det $\left[\binom{i - \max\{-1, j - d\}}{j-i+1} \right]_{i,j=1}^{n-1}$
= $\sum_{0=i_0 \le i_1 \le \dots \le i_{d-1} \le i_d = n} \prod_{0 \le j \le d-2} \binom{i_{j+2}-i_j-1}{i_{j+1}-i_j}$

Theorem (Kitaev–Remmel–Tiefenbruck 2012)

The number of permutations in the symmetric group \mathfrak{S}_n avoiding 132 and $123 \cdots (d+1)$ is C_n^d .

Jia Huang (UNK)

Variations of the Catalan Number

New results on C_n^d

Definition

A composition of *n* is a sequence $\alpha = (\alpha_1, \dots, \alpha_\ell)$ of positive integers such that $\alpha_1 + \dots + \alpha_\ell = n$. Let $\max(\alpha) := \max\{\alpha_1, \dots, \alpha_\ell\}$ and $\ell(\alpha) = \ell$.

イロト イポト イヨト イヨト 二日

New results on C_n^d

Definition

A composition of *n* is a sequence $\alpha = (\alpha_1, \dots, \alpha_\ell)$ of positive integers such that $\alpha_1 + \dots + \alpha_\ell = n$. Let $\max(\alpha) := \max\{\alpha_1, \dots, \alpha_\ell\}$ and $\ell(\alpha) = \ell$.

Theorem (Hein and H. 2019+)

For $n, d \geq 1$, we have

$$C_n^d = \sum_{\substack{\alpha \models n \\ \max(\alpha) \le (d+1)/2}} (-1)^{n-\ell(\alpha)} \binom{d-\alpha_1}{\alpha_1-1} \prod_{2 \le i \le \ell(\alpha)} \binom{d+1-\alpha_i}{\alpha_i}$$

イロト イポト イヨト イヨト 二日

New results on C_n^d

Definition

A composition of *n* is a sequence $\alpha = (\alpha_1, \dots, \alpha_\ell)$ of positive integers such that $\alpha_1 + \dots + \alpha_\ell = n$. Let $\max(\alpha) := \max\{\alpha_1, \dots, \alpha_\ell\}$ and $\ell(\alpha) = \ell$.

Theorem (Hein and H. 2019+)

For $n, d \geq 1$, we have

$$C_n^d = \sum_{\substack{\alpha \models n \\ \max(\alpha) \le (d+1)/2}} (-1)^{n-\ell(\alpha)} \binom{d-\alpha_1}{\alpha_1-1} \prod_{2 \le i \le \ell(\alpha)} \binom{d+1-\alpha_i}{\alpha_i}$$

Theorem (Hein and H. 2019+)

For $n, d \ge 1$, the number C_n^d enumerates nilpotent ideals of the algebra \mathcal{U}_n of n-by-n upper triangular matrices with order at most d.

Jia Huang (UNK)

Variations of the Catalan Number

April 1, 2019 23 / 30

イロト 不得下 不足下 不足

Ideals of upper triangular matrices

Definition

• Let U_n be the algebra of all *n*-by-*n* upper triangular matrices

$$\begin{pmatrix} * & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & * \end{pmatrix}$$

where a star \ast is an arbitrary entry from a fixed field $\mathbb F$ (e.g., $\mathbb R).$

Ideals of upper triangular matrices

Definition

• Let U_n be the algebra of all *n*-by-*n* upper triangular matrices

$$\begin{pmatrix} * & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & * \end{pmatrix}$$

where a star * is an arbitrary entry from a fixed field \mathbb{F} (e.g., \mathbb{R}).

• A (two-sided) ideal I of U_n is a vector subspace of U_n such that $XI \subseteq I$ and $IX \subseteq I$ for all $X \in U_n$.

Ideals of upper triangular matrices

Definition

• Let U_n be the algebra of all *n*-by-*n* upper triangular matrices

$$\begin{pmatrix} * & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & * \end{pmatrix}$$

where a star * is an arbitrary entry from a fixed field \mathbb{F} (e.g., \mathbb{R}).

- A (two-sided) ideal I of U_n is a vector subspace of U_n such that $XI \subseteq I$ and $IX \subseteq I$ for all $X \in U_n$.
- A ideal *I* is nilpotent if *I^k* = 0 for some *k* ≥ 1. The smallest *k* such that *I^k* = 0 is the (nilpotent) order of *I*.

Ideals of upper triangular matrices

Definition

• Let U_n be the algebra of all *n*-by-*n* upper triangular matrices

$$\begin{pmatrix} * & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & * \end{pmatrix}$$

where a star * is an arbitrary entry from a fixed field \mathbb{F} (e.g., \mathbb{R}).

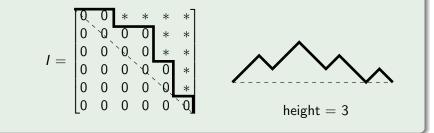
- A (two-sided) ideal I of U_n is a vector subspace of U_n such that $XI \subseteq I$ and $IX \subseteq I$ for all $X \in U_n$.
- A ideal *I* is nilpotent if *I^k* = 0 for some *k* ≥ 1. The smallest *k* such that *I^k* = 0 is the (nilpotent) order of *I*.
- A ideal I of U_n is commutative if AB = BA for all $A, B \in I$.

< A → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 →

Observation

• A nilpotent ideal of U_n is represented by a matrix of 0's and *'s separated by a Dyck path of length 2n.

Variations of the Catalan Number

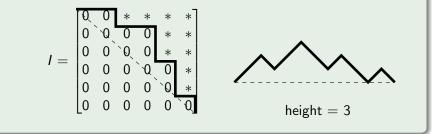


Observation

• A nilpotent ideal of U_n is represented by a matrix of 0's and *'s separated by a Dyck path of length 2n.

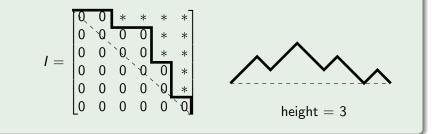
Jia Huang (UNK)

Variations of the Catalan Number



Observation

- A nilpotent ideal of U_n is represented by a matrix of 0's and *'s separated by a Dyck path of length 2n.
- The number of such ideals is the Catalan number $C_n := \frac{1}{n+1} {\binom{2n}{n}}$.



Observation

- A nilpotent ideal of U_n is represented by a matrix of 0's and *'s separated by a Dyck path of length 2n.
- The number of such ideals is the Catalan number $C_n := \frac{1}{n+1} {\binom{2n}{n}}$.
- The number of all ideals of U_n is the Catalan number C_{n+1} .

Proposition (L. Shapiro, 1975)

The number of commutative ideals of U_n is $2^{n-1}(=C_n^2)$. (Direct proof?)

< □ > < 同 > < 回 > < 回 > < 回 >

Proposition (L. Shapiro, 1975)

The number of commutative ideals of U_n is $2^{n-1}(=C_n^2)$. (Direct proof?)

Observation

• An ideal of U_n is commutative iff it has nilpotent order 1 or 2.

A (10) < A (10) < A (10) </p>

Proposition (L. Shapiro, 1975)

The number of commutative ideals of U_n is $2^{n-1}(=C_n^2)$. (Direct proof?)

Observation

- An ideal of U_n is commutative iff it has nilpotent order 1 or 2.
- The order of a nilpotent ideal I of U_n is the largest length d of a sequence (i₁, i₂,..., i_d) such that I_{ij,ij+1} = * for all j = 1, 2, ..., d − 1.

Proposition (L. Shapiro, 1975)

The number of commutative ideals of U_n is $2^{n-1}(=C_n^2)$. (Direct proof?)

Observation

- An ideal of U_n is commutative iff it has nilpotent order 1 or 2.
- The order of a nilpotent ideal I of U_n is the largest length d of a sequence (i₁, i₂,..., i_d) such that I_{ij,ij+1} = * for all j = 1, 2, ..., d − 1.

$I = \begin{bmatrix} 0 & 0 & * & * & * & * \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ has nilpotent order 4 by the sequence (1,3,5,6).	Example								
	1 =	0 0	0 0 0 0	0 0 0 0	0 0 0 0	* * 0 0	* * *	has nilpotent order 4 by the sequence $(1, 3, 5, 6)$.	

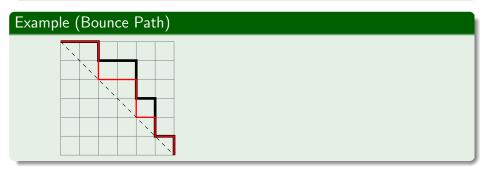
Observation

The nilpotent order of an ideal I of U_n is the number of times the bounce path of its corresponding Dyck path D goes off the main diagonal.

→ < ∃ →</p>

Observation

The nilpotent order of an ideal I of U_n is the number of times the bounce path of its corresponding Dyck path D goes off the main diagonal.

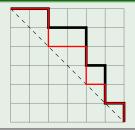


→ < ∃ →</p>

Observation

The nilpotent order of an ideal I of U_n is the number of times the bounce path of its corresponding Dyck path D goes off the main diagonal.

Example (Bounce Path)



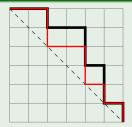
- The bounce path has 4 bounces.
- The Dyck path D has height 3.

→ < ∃ →</p>

Observation

The nilpotent order of an ideal I of U_n is the number of times the bounce path of its corresponding Dyck path D goes off the main diagonal.

Example (Bounce Path)



- The bounce path has 4 bounces.
- The Dyck path D has height 3.

Fact (Andrews-Krattenthaler-Orsina-Papi 2002, Haglund 2008)

Bijection ζ : Dyck paths with height $d \leftrightarrow$ Dyck paths with d bounces.

Jia Huang (UNK)

Variations of the Catalan Number

April 1, 2019 27 / 30

More on nilpotent ideals

Theorem (Hein and H. 2019+)

For $n, d \ge 1$, the number C_n^d enumerates nilpotent ideals of the algebra \mathcal{U}_n of n-by-n upper triangular matrices with order at most d.

For $n, d \ge 1$, the number C_n^d enumerates nilpotent ideals of the algebra \mathcal{U}_n of n-by-n upper triangular matrices with order at most d.

Proof.

By the argument on previous slides, the number of nilpotent ideals of U_n with order at most d equals the number of Dyck paths of length 2n with height at most d; the latter is C_n^d by Kreweras (1970).

For $n, d \ge 1$, the number C_n^d enumerates nilpotent ideals of the algebra \mathcal{U}_n of n-by-n upper triangular matrices with order at most d.

Proof.

By the argument on previous slides, the number of nilpotent ideals of U_n with order at most d equals the number of Dyck paths of length 2n with height at most d; the latter is C_n^d by Kreweras (1970).

Problem

 Find a natural order-preserving bijection between nilpotent ideals of *U_n* and ad-nilpotent ideals of *b*. (The exponential map?)

For $n, d \ge 1$, the number C_n^d enumerates nilpotent ideals of the algebra \mathcal{U}_n of n-by-n upper triangular matrices with order at most d.

Proof.

By the argument on previous slides, the number of nilpotent ideals of U_n with order at most d equals the number of Dyck paths of length 2n with height at most d; the latter is C_n^d by Kreweras (1970).

Problem

- Find a natural order-preserving bijection between nilpotent ideals of *U_n* and ad-nilpotent ideals of *b*. (The exponential map?)
- The result on nilpotent ideas of b has been generalized from type A to other types [Krattenthaler–Orsina–Papi 2002]. Is there a similar generalization for nilpotent ideals of U_n?

The case
$$e = \ell = 1$$
: *k*-associativity at left depth *d*

We have $C^d_{2,n} = C^{d+1}_{1,n}$ and for $d, k \ge 1$ and $n \ge 0$,

$$C_{3,n}^{d} = \sum_{\substack{\alpha \models n+1 \\ h > 1 \Rightarrow \alpha_h \le d+1}} - \left(C_{3,\alpha_1-d-2}^0 + \frac{\delta_{\alpha_1,d}}{2} + (-1)^{\alpha_1} \sum_{i+j=\alpha_1-1} \binom{d-i}{i} \binom{d+1-j}{j} \right) \\ \cdot \prod_{h \ge 2} \left(\left(\delta_{\alpha_h,d} + (-1)^{\alpha_h-1} \sum_{i+j=\alpha_h} \binom{d+1-i}{i} \binom{d+1-j}{j} \right) \right)$$

$$C_{k,n}^{2} = 1 + \sum_{1 \le i \le n-1} \frac{i}{n-i} \sum_{0 \le j \le (n-i-1)/k} (-1)^{j} \binom{n-i}{j} \binom{2n-i-jk-1}{n}$$

= $1 + \sum_{1 \le i \le n-1} \sum_{\lambda \subseteq (k-1)^{n-i}} \frac{n-i-|\lambda|}{n-i} \binom{n-|\lambda|-1}{n-|\lambda|-i} m_{\lambda}(1^{n-i}).$

Conjecture

For $k, \ell \geq 1$ and $n \geq 0$ the equality $C_{k,\ell,n} = C_{k+\ell-1,n}$ holds.

A D N A B N A B N A B N

Conjecture

For $k, \ell \geq 1$ and $n \geq 0$ the equality $C_{k,\ell,n} = C_{k+\ell-1,n}$ holds.

Thank you!

Jia Huang (UNK)

Variations of the Catalan Number

불▶ ◀ 불▶ 불 ∽ 즉 April 1, 2019 30 / 30

< □ > < 同 > < 回 > < 回 > < 回 >