Variations of the Catalan number from nonassociative binary operations

Jia Huang
University of Nebraska at Kearney
E-mail address: huangj2@unk.edu

$$
\text { April 1, } 2019
$$

This is joint work with Nickolas Hein (Benedictine College),
Madison Mickey (UNK) and Jianbai Xu (UNK)

Nonassociativity of binary operations

- Let $*$ be a binary operation on a set X. Let $x_{0}, x_{1}, \ldots, x_{n}$ be X-valued indeterminates.

Nonassociativity of binary operations

- Let $*$ be a binary operation on a set X. Let $x_{0}, x_{1}, \ldots, x_{n}$ be X-valued indeterminates.
- If $*$ is associative then the expression $x_{0} * x_{1} * \cdots * x_{n}$ is unambiguous. Example: $x_{0}+x_{1}+\cdots+x_{n}$.

Nonassociativity of binary operations

- Let $*$ be a binary operation on a set X. Let $x_{0}, x_{1}, \ldots, x_{n}$ be X-valued indeterminates.
- If $*$ is associative then the expression $x_{0} * x_{1} * \cdots * x_{n}$ is unambiguous. Example: $x_{0}+x_{1}+\cdots+x_{n}$.
- If $*$ is nonassociative then $x_{0} * x_{1} * \cdots * x_{n}$ depends on parentheses.

$$
\begin{aligned}
& \left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3} \\
& \left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right) \\
& \left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3} \\
& x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right) \\
& x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)
\end{aligned}
$$

Nonassociativity of binary operations

- Let $*$ be a binary operation on a set X. Let $x_{0}, x_{1}, \ldots, x_{n}$ be X-valued indeterminates.
- If $*$ is associative then the expression $x_{0} * x_{1} * \cdots * x_{n}$ is unambiguous. Example: $x_{0}+x_{1}+\cdots+x_{n}$.
- If $*$ is nonassociative then $x_{0} * x_{1} * \cdots * x_{n}$ depends on parentheses.

$$
\begin{aligned}
& \left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3} \\
& \left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right) \\
& \left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3} \\
& x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right) \\
& x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)
\end{aligned}
$$

- The number of ways to parenthesize $x_{0} * x_{1} * \cdots * x_{n}$ is the Catalan number $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$, e.g., $\left(C_{n}\right)_{n=0}^{6}=(1,1,2,5,14,42,132)$.

Nonassociativity of binary operations

- Let $*$ be a binary operation on a set X. Let $x_{0}, x_{1}, \ldots, x_{n}$ be X-valued indeterminates.
- If $*$ is associative then the expression $x_{0} * x_{1} * \cdots * x_{n}$ is unambiguous. Example: $x_{0}+x_{1}+\cdots+x_{n}$.
- If $*$ is nonassociative then $x_{0} * x_{1} * \cdots * x_{n}$ depends on parentheses.

$$
\begin{aligned}
& \left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3} \\
& \left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right) \\
& \left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3} \\
& x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right) \\
& x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)
\end{aligned}
$$

- The number of ways to parenthesize $x_{0} * x_{1} * \cdots * x_{n}$ is the Catalan number $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$, e.g., $\left(C_{n}\right)_{n=0}^{6}=(1,1,2,5,14,42,132)$.
- Some results from parenthesizing $x_{0} * x_{1} * \cdots * x_{n}$ may coincide.

Nonassociativity of binary operations

- Let $*$ be a binary operation on a set X. Let $x_{0}, x_{1}, \ldots, x_{n}$ be X-valued indeterminates.
- If $*$ is associative then the expression $x_{0} * x_{1} * \cdots * x_{n}$ is unambiguous. Example: $x_{0}+x_{1}+\cdots+x_{n}$.
- If $*$ is nonassociative then $x_{0} * x_{1} * \cdots * x_{n}$ depends on parentheses.

$$
\begin{aligned}
& \left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3}=x_{0}-x_{1}-x_{2}-x_{3} \\
& \left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right)=x_{0}-x_{1}-x_{2}+x_{3} \\
& \left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3}=x_{0}-x_{1}+x_{2}-x_{3} \\
& x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right)=x_{0}-x_{1}+x_{2}+x_{3} \\
& x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)=x_{0}-x_{1}+x_{2}-x_{3}
\end{aligned}
$$

- The number of ways to parenthesize $x_{0} * x_{1} * \cdots * x_{n}$ is the Catalan number $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$, e.g., $\left(C_{n}\right)_{n=0}^{6}=(1,1,2,5,14,42,132)$.
- Some results from parenthesizing $x_{0} * x_{1} * \cdots * x_{n}$ may coincide.

Nonassocitivity measurements

- Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ are equivalent if they give the same function from X^{n+1} to X.

Nonassocitivity measurements

- Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ are equivalent if they give the same function from X^{n+1} to X.
- Define $C_{*, n}$ to be the number of equivalence classes.

Nonassocitivity measurements

- Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ are equivalent if they give the same function from X^{n+1} to X.
- Define $C_{*, n}$ to be the number of equivalence classes.
- Define $\widetilde{C}_{*, n}$ to be the largest size of an equivalence class.

Nonassocitivity measurements

- Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ are equivalent if they give the same function from X^{n+1} to X.
- Define $C_{*, n}$ to be the number of equivalence classes.
- Define $\widetilde{C}_{*, n}$ to be the largest size of an equivalence class.

$$
\begin{aligned}
& \left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3}=x_{0}-x_{1}-x_{2}-x_{3} \\
& \left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right)=x_{0}-x_{1}-x_{2}+x_{3} \\
& \left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3}=x_{0}-x_{1}+x_{2}-x_{3} \\
& x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right)=x_{0}-x_{1}+x_{2}+x_{3} \\
& x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)=x_{0}-x_{1}+x_{2}-x_{3}
\end{aligned}
$$

Nonassocitivity measurements

- Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ are equivalent if they give the same function from X^{n+1} to X.
- Define $C_{*, n}$ to be the number of equivalence classes.
- Define $\widetilde{C}_{*, n}$ to be the largest size of an equivalence class.

$$
\left.\begin{array}{l}
\left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3}=x_{0}-x_{1}-x_{2}-x_{3} \\
\left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right)=x_{0}-x_{1}-x_{2}+x_{3} \\
\left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3}=x_{0}-x_{1}+x_{2}-x_{3} \\
x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right)=x_{0}-x_{1}+x_{2}+x_{3} \\
x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)=x_{0}-x_{1}+x_{2}-x_{3}
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
C_{3}=5 \\
C_{-, 3}=4 \\
\widetilde{C}_{-, 3}=2
\end{array}\right.
$$

Nonassocitivity measurements

- Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ are equivalent if they give the same function from X^{n+1} to X.
- Define $C_{*, n}$ to be the number of equivalence classes.
- Define $\widetilde{C}_{*, n}$ to be the largest size of an equivalence class.

$$
\left.\begin{array}{l}
\left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3}=x_{0}-x_{1}-x_{2}-x_{3} \\
\left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right)=x_{0}-x_{1}-x_{2}+x_{3} \\
\left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3}=x_{0}-x_{1}+x_{2}-x_{3} \\
x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right)=x_{0}-x_{1}+x_{2}+x_{3} \\
x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)=x_{0}-x_{1}+x_{2}-x_{3}
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
C_{3}=5 \\
C_{-, 3}=4 \\
\widetilde{C}_{-, 3}=2
\end{array}\right.
$$

- In general, $1 \leq C_{*, n} \leq C_{n}$ and $1 \leq \widetilde{C}_{*, n} \leq C_{n}$.

Nonassocitivity measurements

- Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ are equivalent if they give the same function from X^{n+1} to X.
- Define $C_{*, n}$ to be the number of equivalence classes.
- Define $\widetilde{C}_{*, n}$ to be the largest size of an equivalence class.

$$
\left.\begin{array}{l}
\left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3}=x_{0}-x_{1}-x_{2}-x_{3} \\
\left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right)=x_{0}-x_{1}-x_{2}+x_{3} \\
\left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3}=x_{0}-x_{1}+x_{2}-x_{3} \\
x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right)=x_{0}-x_{1}+x_{2}+x_{3} \\
x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)=x_{0}-x_{1}+x_{2}-x_{3}
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
C_{3}=5 \\
C_{-, 3}=4 \\
\widetilde{C}_{-, 3}=2
\end{array}\right.
$$

- In general, $1 \leq C_{*, n} \leq C_{n}$ and $1 \leq \widetilde{C}_{*, n} \leq C_{n}$.
- $C_{*, n}=1, \forall n \geq 0 \Leftrightarrow *$ is associative $\Leftrightarrow \widetilde{C}_{*, n}=C_{n}, \forall n \geq 0$.

Nonassocitivity measurements

- Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ are equivalent if they give the same function from X^{n+1} to X.
- Define $C_{*, n}$ to be the number of equivalence classes.
- Define $\widetilde{C}_{*, n}$ to be the largest size of an equivalence class.

$$
\left.\begin{array}{l}
\left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3}=x_{0}-x_{1}-x_{2}-x_{3} \\
\left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right)=x_{0}-x_{1}-x_{2}+x_{3} \\
\left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3}=x_{0}-x_{1}+x_{2}-x_{3} \\
x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right)=x_{0}-x_{1}+x_{2}+x_{3} \\
x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)=x_{0}-x_{1}+x_{2}-x_{3}
\end{array}\right\}
$$

- In general, $1 \leq C_{*, n} \leq C_{n}$ and $1 \leq \widetilde{C}_{*, n} \leq C_{n}$.
- $C_{*, n}=1, \forall n \geq 0 \Leftrightarrow *$ is associative $\Leftrightarrow \widetilde{C}_{*, n}=C_{n}, \forall n \geq 0$.
- Thus $C_{*, n}$ and $\widetilde{C}_{*, n}$ measure how far $*$ is away from being associative.

Binary trees

Fact

Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n} \leftrightarrow$ (full) binary trees with $n+1$ leaves

Binary trees

Fact

Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n} \leftrightarrow$ (full) binary trees with $n+1$ leaves

Example

$\stackrel{\downarrow}{x_{0} *\left(x_{1} *\left(x_{2} * x_{3}\right)\right)}$
$\delta=(1,2,1,0)$
$\delta=(1,1,1,0)$
$\rho=(0,1,2,2)$
$\rho=(0,1,2,3)$

Binary trees

Fact

Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n} \leftrightarrow$ (full) binary trees with $n+1$ leaves

Example

$\underset{\left(x_{0} * x_{1}\right) *\left(x_{2} * x_{3}\right)}{\stackrel{\downarrow}{2})}$
$\delta=(2,1,1,0)$
$\rho=(0,1,1,2)$

$\stackrel{\uparrow}{x_{0} *\left(\left(x_{1} * x_{2}\right) * x_{3}\right)}$
$\delta=(1,2,1,0)$
$\rho=(0,1,2,2)$

$\stackrel{\downarrow}{x_{0} *\left(x_{1} *\left(x_{2} * x_{3}\right)\right)}$
$\delta=(1,1,1,0)$
$\rho=(0,1,2,3)$

Definition

- Let $\mathcal{T}_{n}:=\{$ binary trees with $n+1$ leaves $\}$. If $t, t^{\prime} \in \mathcal{T}_{n}$ correspond to equivalent paranthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ then define $t \sim_{*} t^{\prime}$.
- The left/right depth $\delta_{i}(t) / \rho_{i}(t)$ of leaf i in $t \in \mathcal{T}_{n}$ is the number of edges to the left/right in the path from the root of t down to i.

A generalization of associativity

Definition

- A binary operation $*$ is k-associative if

$$
\left(x_{0} * \cdots * x_{k}\right) * x_{k+1}=x_{0} *\left(x_{1} * \cdots * x_{k+1}\right)
$$

where the operations in parentheses are performed left to right.

A generalization of associativity

Definition

- A binary operation $*$ is k-associative if

$$
\left(x_{0} * \cdots * x_{k}\right) * x_{k+1}=x_{0} *\left(x_{1} * \cdots * x_{k+1}\right)
$$

where the operations in parentheses are performed left to right.

- For any operation $*$ satisfying exactly the k-associativity, we write $C_{k, n}:=C_{*, n}\left(k\right.$-modular Catalan number) and $\widetilde{C}_{k, n}:=\widetilde{C}_{*, n}$.

A generalization of associativity

Definition

- A binary operation $*$ is k-associative if

$$
\left(x_{0} * \cdots * x_{k}\right) * x_{k+1}=x_{0} *\left(x_{1} * \cdots * x_{k+1}\right)
$$

where the operations in parentheses are performed left to right.

- For any operation $*$ satisfying exactly the k-associativity, we write $C_{k, n}:=C_{*, n}$ (k-modular Catalan number) and $\widetilde{C}_{k, n}:=\widetilde{C}_{*, n}$.

Example (Generalization of "+" $(k=1)$ and "-" $(k=2))$

Let $\omega:=e^{2 \pi i / k}$ be a primitive k th root of unity. Then $*$ is k-associative if

$$
a * b:=\omega a+b, \quad \forall a, b \in \mathbb{C} .
$$

A generalization of associativity

Definition

- A binary operation $*$ is k-associative if

$$
\left(x_{0} * \cdots * x_{k}\right) * x_{k+1}=x_{0} *\left(x_{1} * \cdots * x_{k+1}\right)
$$

where the operations in parentheses are performed left to right.

- For any operation $*$ satisfying exactly the k-associativity, we write $C_{k, n}:=C_{*, n}\left(k\right.$-modular Catalan number) and $\widetilde{C}_{k, n}:=\widetilde{C}_{*, n}$.

Example (Generalization of " + " $(k=1)$ and "-" $(k=2)$)

Let $\omega:=e^{2 \pi i / k}$ be a primitive k th root of unity. Then $*$ is k-associative if

$$
a * b:=\omega a+b, \quad \forall a, b \in \mathbb{C} .
$$

Observation (A generalization of the Tamari order)

The k-associativity gives the k-associative order on binary trees.

Tamari order and 2-associative order on \mathcal{T}_{4}

Components of k-associative order

Example $\left(\mathrm{comb}_{4}\right.$ and $\left.\mathrm{comb}_{4}^{1}\right)$

Components of k-associative order

Example $\left(\mathrm{comb}_{4}\right.$ and $\left.\mathrm{comb}_{4}^{1}\right)$

Theorem (Hein and H. 2017)

- A binary tree is maximal (or minimal) in the k-associative order if and only if it avoids the binary tree $\operatorname{comb}_{k+1}\left(\right.$ or $\left.\mathrm{comb}_{k}^{1}\right)$ as a subtree.

Components of k-associative order

Example $\left(\mathrm{comb}_{4}\right.$ and $\left.\mathrm{comb}_{4}^{1}\right)$

Theorem (Hein and H. 2017)

- A binary tree is maximal (or minimal) in the k-associative order if and only if it avoids the binary tree $\operatorname{comb}_{k+1}\left(\right.$ or $\left.\mathrm{comb}_{k}^{1}\right)$ as a subtree.
- Each component in k-associative order has a unique minimal tree.

Components of k-associative order

Example $\left(\mathrm{comb}_{4}\right.$ and $\left.\mathrm{comb}_{4}^{1}\right)$

Theorem (Hein and H. 2017)

- A binary tree is maximal (or minimal) in the k-associative order if and only if it avoids the binary tree $\operatorname{comb}_{k+1}\left(\right.$ or comb ${ }_{k}^{1}$) as a subtree.
- Each component in k-associative order has a unique minimal tree.

Theorem (Hein and H. 2017)

Two binary trees t and t^{\prime} correspond to equivalent parenthesizations if and only if $\delta_{i}(t) \equiv \delta_{i}\left(t^{\prime}\right)(\bmod k)$ for all i.

Binary trees

Fact

Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n} \leftrightarrow$ (full) binary trees with $n+1$ leaves

Example

$\underset{\left(x_{0} * x_{1}\right) *\left(x_{2} * x_{3}\right)}{\stackrel{\downarrow}{2})}$
$\delta=(2,1,1,0)$
$\rho=(0,1,1,2)$

$\stackrel{\uparrow}{x_{0} *\left(\left(x_{1} * x_{2}\right) * x_{3}\right)}$
$\delta=(1,2,1,0)$
$\rho=(0,1,2,2)$

$\stackrel{\downarrow}{x_{0} *\left(x_{1} *\left(x_{2} * x_{3}\right)\right)}$
$\delta=(1,1,1,0)$
$\rho=(0,1,2,3)$

Definition

- Let $\mathcal{T}_{n}:=\{$ binary trees with $n+1$ leaves $\}$. If $t, t^{\prime} \in \mathcal{T}_{n}$ correspond to equivalent paranthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ then define $t \sim_{*} t^{\prime}$.
- The left/right depth $\delta_{i}(t) / \rho_{i}(t)$ of leaf i in $t \in \mathcal{T}_{n}$ is the number of edges to the left/right in the path from the root of t down to i.

Connections to other objects

Fact

There are well-known bijections among many families of Catalan objects.

Connections to other objects

Fact

There are well-known bijections among many families of Catalan objects.

Proposition (Hein and H. 2017)

For $n \geq 0$ and $k \geq 1, C_{k, n}$ enumerates the following:
(1) the set of binary trees with $n+1$ leaves avoiding $\operatorname{comb}_{k}^{1}$,
(2) plane trees with n non-root nodes, each of degree less than k,
(3) Dyck paths of length $2 n$ avoiding $D U^{k}$ (a down-step immediately followed by k up-steps),
(9) partitions bounded by $(n-1, n-2, \ldots, 1,0)$ with each positive part occurring fewer than k times,
(0) $2 \times n$ standard Young tableaux which contain no list of k consecutive numbers in the top row other than $1,2, \ldots, \ell$ for any $\ell \in[n]$,
(0) permutations of $[n]$ avoiding 1-3-2 and $23 \cdots(k+1) 1$.

Examples of Catalan objects

The objects on each row are counted by the Catalan number C_{3}. The rightmost column gives objects excluded by $C_{2,3}$.

Formulas for $C_{k, n}$ and $\widetilde{C}_{k, n}$

Theorem (Hein and H. 2017)
For $k, n \geq 1$, we have

$$
C_{k, n}=\sum_{\substack{\lambda \subseteq(k-1)^{n}}} \frac{n-|\lambda|}{n} m_{\lambda}\left(1^{n}\right)=\sum_{0 \leq j \leq(n-1) / k} \frac{(-1)^{j}}{n}\binom{n}{j}\binom{2 n-j k}{n+1},
$$

Formulas for $C_{k, n}$ and $\widetilde{C}_{k, n}$

Theorem (Hein and H. 2017)

For $k, n \geq 1$, we have

$$
\begin{gathered}
C_{k, n}=\sum_{\substack{\lambda \subseteq(k-1)^{n} \\
|\lambda|<n}} \frac{n-|\lambda|}{n} m_{\lambda}\left(1^{n}\right)=\sum_{0 \leq j \leq(n-1) / k} \frac{(-1)^{j}}{n}\binom{n}{j}\binom{2 n-j k}{n+1}, \\
\widetilde{C}_{k, n}=\sum_{0 \leq j \leq n / k} \frac{n-j k}{n}\binom{n+j-1}{j} .
\end{gathered}
$$

Formulas for $C_{k, n}$ and $\widetilde{C}_{k, n}$

Theorem (Hein and H. 2017)

For $k, n \geq 1$, we have

$$
\begin{gathered}
C_{k, n}=\sum_{\substack{\lambda \subseteq(k-1)^{n} \\
|\lambda|<n}} \frac{n-|\lambda|}{n} m_{\lambda}\left(1^{n}\right)=\sum_{0 \leq j \leq(n-1) / k} \frac{(-1)^{j}}{n}\binom{n}{j}\binom{2 n-j k}{n+1}, \\
\widetilde{C}_{k, n}=\sum_{0 \leq j \leq n / k} \frac{n-j k}{n}\binom{n+j-1}{j} .
\end{gathered}
$$

Moreover, the number of components in k-associative order with size $\widetilde{C}_{k, n}$ is C_{m}, where m is the least positive integer congruent to n modulo k.

Formulas for $C_{k, n}$ and $\widetilde{C}_{k, n}$

Theorem (Hein and H. 2017)

For $k, n \geq 1$, we have

$$
\begin{gathered}
C_{k, n}=\sum_{\substack{\lambda \subseteq(k-1)^{n} \\
|\lambda|<n}} \frac{n-|\lambda|}{n} m_{\lambda}\left(1^{n}\right)=\sum_{0 \leq j \leq(n-1) / k} \frac{(-1)^{j}}{n}\binom{n}{j}\binom{2 n-j k}{n+1}, \\
\widetilde{C}_{k, n}=\sum_{0 \leq j \leq n / k} \frac{n-j k}{n}\binom{n+j-1}{j} .
\end{gathered}
$$

Moreover, the number of components in k-associative order with size $\widetilde{C}_{k, n}$ is C_{m}, where m is the least positive integer congruent to n modulo k.

Proof.

One proof uses generating functions and Lagrange inversion. The other proof is more direct, using Dyck paths (and sign-reversing involutions).

Tamari order and 2-associative order on \mathcal{T}_{4}

Modular Catalan numbers

Example ($C_{k, n}$ for $n \leq 10$ and $k \leq 8$)

n	0	1	2	3	4	5	6	7	8	9	10	
$C_{1, n}$	1	1	1	1	1	1	1	1	1	1	1	$\frac{\mathrm{~A} 000012}{}$
$C_{2, n}$	1	1	2	4	8	16	32	64	128	256	512	$\frac{\mathrm{~A} 011782}{}$
$C_{3, n}$	1	1	2	5	13	35	96	267	750	2123	6046	$\frac{\mathrm{~A} 005773}{}$
$C_{4, n}$	1	1	2	5	14	41	124	384	1210	3865	12482	A 159772
$C_{5, n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
$C_{6, n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
$C_{7, n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
$C_{8, n}$	1	1	2	5	14	42	132	429	1430	4861	16784	new
C_{n}	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

Modular Catalan numbers

Example ($C_{k, n}$ for $n \leq 10$ and $k \leq 8$)

n	0	1	2	3	4	5	6	7	8	9	10	
$C_{1, n}$	1	1	1	1	1	1	1	1	1	1	1	$\frac{\mathrm{~A} 000012}{}$
$C_{2, n}$	1	1	2	4	8	16	32	64	128	256	512	$\underline{\mathrm{~A} 011782}$
$C_{3, n}$	1	1	2	5	13	35	96	267	750	2123	6046	$\underline{\mathrm{~A} 005773}$
$C_{4, n}$	1	1	2	5	14	41	124	384	1210	3865	12482	A 159772
$C_{5, n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
$C_{6, n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
$C_{7, n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
$C_{8, n}$	1	1	2	5	14	42	132	429	1430	4861	16784	new
C_{n}	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

Question

- $\lim _{n \rightarrow \infty} C_{n+1} / C_{n}=4, \lim _{n \rightarrow \infty} C_{k, n+1} / C_{k, n}=$?

Modular Catalan numbers

Example ($C_{k, n}$ for $n \leq 10$ and $k \leq 8$)

n	0	1	2	3	4	5	6	7	8	9	10	
$C_{1, n}$	1	1	1	1	1	1	1	1	1	1	1	$\frac{\mathrm{~A} 000012}{}$
$C_{2, n}$	1	1	2	4	8	16	32	64	128	256	512	$\frac{\mathrm{~A} 011782}{}$
$C_{3, n}$	1	1	2	5	13	35	96	267	750	2123	6046	$\frac{\mathrm{~A} 005773}{}$
$C_{4, n}$	1	1	2	5	14	41	124	384	1210	3865	12482	A159772
$C_{5, n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
$C_{6, n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
$C_{7, n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
$C_{8, n}$	1	1	2	5	14	42	132	429	1430	4861	16784	new
C_{n}	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

Question

- $\lim _{n \rightarrow \infty} C_{n+1} / C_{n}=4, \lim _{n \rightarrow \infty} C_{k, n+1} / C_{k, n}=$?
- There is a formula $C_{3, n}=\sum_{0 \leq i \leq n-1}\binom{n-1}{i}\binom{i}{\lfloor i / 2\rfloor}$ obtained by

Modular Catalan numbers

Example ($C_{k, n}$ for $n \leq 10$ and $k \leq 8$)

n	0	1	2	3	4	5	6	7	8	9	10	
$C_{1, n}$	1	1	1	1	1	1	1	1	1	1	1	$\frac{\mathrm{~A} 000012}{}$
$C_{2, n}$	1	1	2	4	8	16	32	64	128	256	512	$\frac{\mathrm{~A} 011782}{}$
$C_{3, n}$	1	1	2	5	13	35	96	267	750	2123	6046	$\frac{\mathrm{~A} 005773}{}$
$C_{4, n}$	1	1	2	5	14	41	124	384	1210	3865	12482	A159772
$C_{5, n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
$C_{6, n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
$C_{7, n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
$C_{8, n}$	1	1	2	5	14	42	132	429	1430	4861	16784	new
C_{n}	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

Question

- $\lim _{n \rightarrow \infty} C_{n+1} / C_{n}=4, \lim _{n \rightarrow \infty} C_{k, n+1} / C_{k, n}=$?
- There is a formula $C_{3, n}=\sum_{0 \leq i \leq n-1}\binom{n-1}{i}\binom{i}{\lfloor i / 2\rfloor}$ obtained by
- Gouyou-Beauchamps and Viennot in studies of directed animals, and

Modular Catalan numbers

Example $\left(C_{k, n}\right.$ for $n \leq 10$ and $\left.k \leq 8\right)$

n	0	1	2	3	4	5	6	7	8	9	10	
$C_{1, n}$	1	1	1	1	1	1	1	1	1	1	1	$\frac{\mathrm{~A} 000012}{}$
$C_{2, n}$	1	1	2	4	8	16	32	64	128	256	512	$\frac{\mathrm{~A} 011782}{}$
$C_{3, n}$	1	1	2	5	13	35	96	267	750	2123	6046	$\frac{\mathrm{~A} 005773}{}$
$C_{4, n}$	1	1	2	5	14	41	124	384	1210	3865	12482	A159772
$C_{5, n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
$C_{6, n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
$C_{7, n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
$C_{8, n}$	1	1	2	5	14	42	132	429	1430	4861	16784	new
C_{n}	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

Question

- $\lim _{n \rightarrow \infty} C_{n+1} / C_{n}=4, \lim _{n \rightarrow \infty} C_{k, n+1} / C_{k, n}=$?
- There is a formula $C_{3, n}=\sum_{0 \leq i \leq n-1}\binom{n-1}{i}\binom{i}{i / 2\rfloor}$ obtained by
- Gouyou-Beauchamps and Viennot in studies of directed animals, and
- Panyushev using affine Weyl group of the Lie algebra $\mathfrak{s p}_{2 n}$ or $\mathfrak{s o}_{2 n+1}$.

Modular Catalan numbers

Example $\left(C_{k, n}\right.$ for $n \leq 10$ and $\left.k \leq 8\right)$

n	0	1	2	3	4	5	6	7	8	9	10	
$C_{1, n}$	1	1	1	1	1	1	1	1	1	1	1	$\frac{\mathrm{~A} 000012}{}$
$C_{2, n}$	1	1	2	4	8	16	32	64	128	256	512	$\frac{\mathrm{~A} 011782}{}$
$C_{3, n}$	1	1	2	5	13	35	96	267	750	2123	6046	$\frac{\mathrm{~A} 005773}{}$
$C_{4, n}$	1	1	2	5	14	41	124	384	1210	3865	12482	A159772
$C_{5, n}$	1	1	2	5	14	42	131	420	1375	4576	15431	new
$C_{6, n}$	1	1	2	5	14	42	132	428	1420	4796	16432	new
$C_{7, n}$	1	1	2	5	14	42	132	429	1429	4851	16718	new
$C_{8, n}$	1	1	2	5	14	42	132	429	1430	4861	16784	new
C_{n}	1	1	2	5	14	42	132	429	1430	4862	16796	A000108

Question

- $\lim _{n \rightarrow \infty} C_{n+1} / C_{n}=4, \lim _{n \rightarrow \infty} C_{k, n+1} / C_{k, n}=$?
- There is a formula $C_{3, n}=\sum_{0 \leq i \leq n-1}\binom{n-1}{i}\binom{i}{i / 2\rfloor}$ obtained by
- Gouyou-Beauchamps and Viennot in studies of directed animals, and
- Panyushev using affine Weyl group of the Lie algebra $\mathfrak{s p}_{2 n}$ or $\mathfrak{s o}_{2 n+1}$. Is there a generalization of this formula from $k=3$ to $k \geq 4$?

Double Minus

Definition

- Define $a * b:=\omega a+\eta b$ for $a, b \in \mathbb{C}$, where $\omega:=e^{2 \pi i / k}$ and $\eta:=e^{2 \pi i / \ell}$. When $k=\ell=2$ this gives $a \ominus b:=-a-b$.

Double Minus

Definition

- Define $a * b:=\omega a+\eta b$ for $a, b \in \mathbb{C}$, where $\omega:=e^{2 \pi i / k}$ and $\eta:=e^{2 \pi i / \ell}$. When $k=\ell=2$ this gives $a \ominus b:=-a-b$.
- Let $C_{\ominus, n, r}$ be the number of distinct results from $x_{0} \ominus x_{1} \ominus \cdots \ominus x_{n}$ with exactly r plus signs. Let $C_{\ominus, n}:=\sum_{0 \leq r \leq n+1} C_{\ominus, n, r}$.

Double Minus

Definition

- Define $a * b:=\omega a+\eta b$ for $a, b \in \mathbb{C}$, where $\omega:=e^{2 \pi i / k}$ and $\eta:=e^{2 \pi i / \ell}$. When $k=\ell=2$ this gives $a \ominus b:=-a-b$.
- Let $C_{\ominus, n, r}$ be the number of distinct results from $x_{0} \ominus x_{1} \ominus \cdots \ominus x_{n}$ with exactly r plus signs. Let $C_{\ominus, n}:=\sum_{0 \leq r \leq n+1} C_{\ominus, n, r}$.

Theorem (H., Mickey, and Xu 2017)

- If $n \geq 1$ and $0 \leq r \leq n+1$ then

$$
C_{\ominus, n, r}=\left\{\begin{array}{lll}
\binom{n+1}{r}, & \text { if } n+r \equiv 1 \quad(\bmod 3) \text { and } n \neq 2 r-2, \\
\binom{n+1}{r}-1, & \text { if } n+r \equiv 1 \quad(\bmod 3) \text { and } n=2 r-2, \\
0, & \text { if } n+r \not \equiv 1 \quad(\bmod 3)
\end{array}\right.
$$

A truncated/modified Pascal Triangle

Example ($C_{\ominus, n, r}$ for $n \leq 10$ and $0 \leq r \leq n+1$)

r	0	1	2	3	4	5	6	7	8	9	10	11
$C_{\ominus, 0, r}$		1										
$C_{\ominus, 1, r}$	1											
$C_{\ominus, 2, r}$			2									
$C_{\ominus, 3, r}$		4			1							
$C_{\ominus, 4, r}$	1			9								
$C_{\ominus, 5, r}$		15			6							
$C_{\ominus, 6, r}$		7			34			1				
$C_{\ominus, 7, r}$	1			56			28					
$C_{\ominus, 8, r}$			36			125			9			
$C_{\ominus, 9, r}$		10			210			120			1	
$C_{\ominus, 10, r}$	1			165			461		55			

Double Minus

Definition

- Define $a * b:=\omega a+\eta b$ for $a, b \in \mathbb{C}$, where $\omega:=e^{2 \pi i / k}$ and $\eta:=e^{2 \pi i / \ell}$. When $k=\ell=2$ this gives $a \ominus b:=-a-b$.
- Let $C_{\ominus, n, r}$ be the number of distinct results from $x_{0} \ominus x_{1} \ominus \cdots \ominus x_{n}$ with exactly r plus signs. Let $C_{\ominus, n}:=\sum_{0 \leq r \leq n+1} C_{\ominus, n, r}$.

Theorem (H., Mickey, and Xu 2017)

- If $n \geq 1$ and $0 \leq r \leq n+1$ then

$$
C_{\ominus, n, r}= \begin{cases}\binom{n+1}{r}, & \text { if } n+r \equiv 1 \quad(\bmod 3) \text { and } n \neq 2 r-2, \\ \binom{n+1}{r}-1, & \text { if } n+r \equiv 1 \quad(\bmod 3) \text { and } n=2 r-2, \\ 0, & \text { if } n+r \not \equiv 1 \quad(\bmod 3)\end{cases}
$$

- For $n \geq 1$ we have $C_{\ominus, n}= \begin{cases}\frac{2^{n+1}-1}{3}, & \text { if } n \text { is odd; } \\ \frac{2^{n+1}-2}{3}, & \text { if } n \text { is even. }\end{cases}$

OEIS A000975

Definition

The sequence $\underline{A 000975}\left(A_{n}: n \geq 1\right)=(1,2,5,10,21,42,85, \ldots)$ has many equivalent characterizations, such as the following.

OEIS A000975

Definition

The sequence $\underline{A 000975}\left(A_{n}: n \geq 1\right)=(1,2,5,10,21,42,85, \ldots)$ has many equivalent characterizations, such as the following.

- $A_{1}=1, A_{n+1}=2 A_{n}$ if n is odd, and $A_{n+1}=2 A_{n}+1$ if n is even.

OEIS A000975

Definition

The sequence $\underline{\mathrm{A} 000975}\left(A_{n}: n \geq 1\right)=(1,2,5,10,21,42,85, \ldots)$ has many equivalent characterizations, such as the following.

- $A_{1}=1, A_{n+1}=2 A_{n}$ if n is odd, and $A_{n+1}=2 A_{n}+1$ if n is even.
- A_{n} is the integer with an alternating binary representation of length n. $\left(1=1_{2}, 2=10_{2}, 5=101_{2}, 10=1010_{2}, 21=10101_{2}, \ldots\right)$

OEIS A000975

Definition

The sequence $\underline{\text { A000975 }}\left(A_{n}: n \geq 1\right)=(1,2,5,10,21,42,85, \ldots)$ has many equivalent characterizations, such as the following.

- $A_{1}=1, A_{n+1}=2 A_{n}$ if n is odd, and $A_{n+1}=2 A_{n}+1$ if n is even.
- A_{n} is the integer with an alternating binary representation of length n. $\left(1=1_{2}, 2=10_{2}, 5=101_{2}, 10=1010_{2}, 21=10101_{2}, \ldots\right)$
- $A_{n}=\left\lfloor\frac{2^{n+1}}{3}\right\rfloor=\frac{2^{n+2}-3-(-1)^{n}}{6}= \begin{cases}\frac{2^{n+1}-1}{3}, & \text { if } n \text { is odd; } \\ \frac{2^{n+1}-2}{3}, & \text { if } n \text { is even. }\end{cases}$

OEIS A000975

Definition

The sequence $\underline{\mathrm{A} 000975}\left(A_{n}: n \geq 1\right)=(1,2,5,10,21,42,85, \ldots)$ has many equivalent characterizations, such as the following.

- $A_{1}=1, A_{n+1}=2 A_{n}$ if n is odd, and $A_{n+1}=2 A_{n}+1$ if n is even.
- A_{n} is the integer with an alternating binary representation of length n. $\left(1=1_{2}, 2=10_{2}, 5=101_{2}, 10=1010_{2}, 21=10101_{2}, \ldots\right)$
- $A_{n}=\left\lfloor\frac{2^{n+1}}{3}\right\rfloor=\frac{2^{n+2}-3-(-1)^{n}}{6}= \begin{cases}\frac{2^{n+1}-1}{3}, & \text { if } n \text { is odd; } \\ \frac{2^{n+1}-2}{3}, & \text { if } n \text { is even. }\end{cases}$
- A_{n} is the number of moves to solve the n-ring Chinese Rings puzzle. $n=4: 0000-0001-0011-0010-0110-0111-0101-0100-1100-1101-1111$

OEIS A000975

Definition

The sequence $\underline{\text { A000975 }}\left(A_{n}: n \geq 1\right)=(1,2,5,10,21,42,85, \ldots)$ has many equivalent characterizations, such as the following.

- $A_{1}=1, A_{n+1}=2 A_{n}$ if n is odd, and $A_{n+1}=2 A_{n}+1$ if n is even.
- A_{n} is the integer with an alternating binary representation of length n. $\left(1=1_{2}, 2=10_{2}, 5=101_{2}, 10=1010_{2}, 21=10101_{2}, \ldots\right)$
- $A_{n}=\left\lfloor\frac{2^{n+1}}{3}\right\rfloor=\frac{2^{n+2}-3-(-1)^{n}}{6}= \begin{cases}\frac{2^{n+1}-1}{3}, & \text { if } n \text { is odd; } \\ \frac{2^{n+1}-2}{3}, & \text { if } n \text { is even. }\end{cases}$
- A_{n} is the number of moves to solve the n-ring Chinese Rings puzzle. $n=4: 0000-0001-0011-0010-0110-0111-0101-0100-1100-1101-1111$

Question

- Bijections between different objects enumerated by A_{n} ?
- Any formula for $\widetilde{\mathcal{C}}_{\ominus, n}$? $(1,1,1,2,3,5,9,16,28,54,99, \ldots)$

Further Generalizations

- We can define $a * b:=\omega a+\eta b$ for a, b in a ring R, where $\omega, \eta \in R$ satisfy $\omega^{k}=1$ and $\eta^{\ell}=1$. But there is interference between ω and η.

Further Generalizations

- We can define $a * b:=\omega a+\eta b$ for a, b in a ring R, where $\omega, \eta \in R$ satisfy $\omega^{k}=1$ and $\eta^{\ell}=1$. But there is interference between ω and η.
- Define $f * g:=x f+y g$ for all $f, g \in \mathbb{C}[x, y] /\left(x^{d+k}-x^{d}, y^{e+\ell}-y^{e}\right)$.

Further Generalizations

- We can define $a * b:=\omega a+\eta b$ for a, b in a ring R, where $\omega, \eta \in R$ satisfy $\omega^{k}=1$ and $\eta^{\ell}=1$. But there is interference between ω and η.
- Define $f * g:=x f+y g$ for all $f, g \in \mathbb{C}[x, y] /\left(x^{d+k}-x^{d}, y^{e+\ell}-y^{e}\right)$.
- A finite semigroup generated by a single element x can be written as $\left\{x, x^{2}, \ldots, x^{d+k-1}\right\}$ with relation $x^{d+k}=x^{d}$ for some positive integers d and k which are called the index and period of x.

Further Generalizations

- We can define $a * b:=\omega a+\eta b$ for a, b in a ring R, where $\omega, \eta \in R$ satisfy $\omega^{k}=1$ and $\eta^{\ell}=1$. But there is interference between ω and η.
- Define $f * g:=x f+y g$ for all $f, g \in \mathbb{C}[x, y] /\left(x^{d+k}-x^{d}, y^{e+\ell}-y^{e}\right)$.
- A finite semigroup generated by a single element x can be written as $\left\{x, x^{2}, \ldots, x^{d+k-1}\right\}$ with relation $x^{d+k}=x^{d}$ for some positive integers d and k which are called the index and period of x.
- A parenthesization of $f_{0} * \cdots * f_{n}$ corresponding to $t \in \mathcal{T}_{n}$ equals

$$
x^{\delta_{0}(t)} y^{\rho_{0}(t)} f_{0}+\cdots+x^{\delta_{n}(t)} y^{\rho_{n}(t)} f_{n}
$$

Further Generalizations

- We can define $a * b:=\omega a+\eta b$ for a, b in a ring R, where $\omega, \eta \in R$ satisfy $\omega^{k}=1$ and $\eta^{\ell}=1$. But there is interference between ω and η.
- Define $f * g:=x f+y g$ for all $f, g \in \mathbb{C}[x, y] /\left(x^{d+k}-x^{d}, y^{e+\ell}-y^{e}\right)$.
- A finite semigroup generated by a single element x can be written as $\left\{x, x^{2}, \ldots, x^{d+k-1}\right\}$ with relation $x^{d+k}=x^{d}$ for some positive integers d and k which are called the index and period of x.
- A parenthesization of $f_{0} * \cdots * f_{n}$ corresponding to $t \in \mathcal{T}_{n}$ equals

$$
x^{\delta_{0}(t)} y^{\rho_{0}(t)} f_{0}+\cdots+x^{\delta_{n}(t)} y^{\rho_{n}(t)} f_{n}
$$

- Let $C_{k, \ell, n}^{d, e}:=C_{*, n}$ and $\widetilde{C}_{k, \ell, n}^{d, e}:=\widetilde{C}_{*, n}$ be, respectively, the number of equivalence classes and the largest size of an equivalence class of parenthesizations of $f_{0} * f_{1} * \cdots * f_{n}$.

The case $k=\ell=1$: Associativity at depth (d, e)

Theorem (Hein and H. 2019+)
Let $k=\ell=1$ and $t, t^{\prime} \in \mathcal{T}_{n}$. Then $t \sim_{*} t^{\prime}$ if and only if t be obtained from t^{\prime} by a finite sequence of moves, each of which replaces the maximal subtree rooted at a node of left depth $\delta \geq d-1$ and right depth $\rho \geq e-1$ with a binary tree containing the same number of leaves.

The case $k=\ell=1$: Associativity at depth (d, e)

Theorem (Hein and H. 2019+)

Let $k=\ell=1$ and $t, t^{\prime} \in \mathcal{T}_{n}$. Then $t \sim_{*} t^{\prime}$ if and only if t be obtained from t^{\prime} by a finite sequence of moves, each of which replaces the maximal subtree rooted at a node of left depth $\delta \geq d-1$ and right depth $\rho \geq e-1$ with a binary tree containing the same number of leaves.

Theorem (Hein and H. 2019+)

- If $n<d+e$ then $\widetilde{C}_{n}^{d, e}=1$. If $n \geq d+e$ then $\widetilde{C}_{n}^{d, e}=n+2-d-e$ and the number of equivalence classes with this size is $\binom{d+e-2}{d-1}$.

The case $k=\ell=1$: Associativity at depth (d, e)

Theorem (Hein and H. 2019+)

Let $k=\ell=1$ and $t, t^{\prime} \in \mathcal{T}_{n}$. Then $t \sim_{*} t^{\prime}$ if and only if t be obtained from t^{\prime} by a finite sequence of moves, each of which replaces the maximal subtree rooted at a node of left depth $\delta \geq d-1$ and right depth $\rho \geq e-1$ with a binary tree containing the same number of leaves.

Theorem (Hein and H. 2019+)

- If $n<d+e$ then $\widetilde{C}_{n}^{d, e}=1$. If $n \geq d+e$ then $\widetilde{C}_{n}^{d, e}=n+2-d-e$ and the number of equivalence classes with this size is $\binom{d+e-2}{d-1}$.
- The size of an arbitrary equivalence class is a product of Catalan numbers $C_{m_{0}-1} \cdots C_{m_{r}-1}$ with $m_{0}+\cdots+m_{r}=n+1$.

The case $k=\ell=1$: Associativity at depth (d, e)

Theorem (Hein and H. 2019+)

Let $k=\ell=1$ and $t, t^{\prime} \in \mathcal{T}_{n}$. Then $t \sim_{*} t^{\prime}$ if and only if t be obtained from t^{\prime} by a finite sequence of moves, each of which replaces the maximal subtree rooted at a node of left depth $\delta \geq d-1$ and right depth $\rho \geq e-1$ with a binary tree containing the same number of leaves.

Theorem (Hein and H. 2019+)

- If $n<d+e$ then $\widetilde{C}_{n}^{d, e}=1$. If $n \geq d+e$ then $\widetilde{C}_{n}^{d, e}=n+2-d-e$ and the number of equivalence classes with this size is $\binom{d+e-2}{d-1}$.
- The size of an arbitrary equivalence class is a product of Catalan numbers $C_{m_{0}-1} \cdots C_{m_{r}-1}$ with $m_{0}+\cdots+m_{r}=n+1$.
- The generating function $C^{d, e}(x):=\sum_{n \geq 0} C_{n}^{d, e} x^{n+1}$ satisfies

$$
C^{d, e}(x)=x+C^{d-1, e}(x) C^{d, e-1}(x)
$$

where a zero in the supscript is treated as one.

The case $k=\ell=e=1$

Corollary (Hein and H. 2019+)

The generating function $C^{d}(x):=C^{d, 1}(x)$ satisfies $C^{d}(x)=\frac{x}{1-C^{d-1}(x)}$.
Thus the number $C_{n}^{d}:=C_{n}^{d, 1}$ is given by OEIS A080934.

The case $k=\ell=e=1$

Corollary (Hein and H. 2019+)

The generating function $C^{d}(x):=C^{d, 1}(x)$ satisfies $C^{d}(x)=\frac{x}{1-C^{d-1}(x)}$. Thus the number $C_{n}^{d}:=C_{n}^{d, 1}$ is given by OEIS A080934.

Example

$C^{1}(x)=\frac{x}{1-x}, C^{2}(x)=\frac{x}{1-\frac{x}{1-x}}=\frac{x(1-x)}{1-2 x}, C^{3}(x)=\frac{x}{1-\frac{x}{1-\frac{x}{1-x}}}=\frac{x(1-2 x)}{1-3 x+x^{2}}$

n	1	2	3	4	5	6	7	n
C_{n}^{1}	1	1	1	1	1	1	1	1
C_{n}^{2}	1	2	4	8	16	32	64	2^{n-1}
C_{n}^{3}	1	2	5	13	34	89	233	$F_{2 n-1}$
C_{n}^{4}	1	2	5	14	41	122	365	$\frac{1}{2}\left(1+3^{n-1}\right)$
C_{n}	1	2	5	14	42	132	429	$\frac{1}{n+1}\binom{2 n}{n}$

Some old results on C_{n}^{d}

Theorem (Kreweras 1970)

The number of Dyck paths of length $2 n$ with height at most d is C_{n}^{d} and

$$
C^{d}(x)=\frac{x F_{d+1}(x)}{F_{d+2}(x)}
$$

where $F_{i}(x):=i$ for $i=0,1$, and $F_{n}(x):=F_{n-1}(x)-x F_{n-2}(x), n \geq 2$.

Some old results on C_{n}^{d}

Theorem (Kreweras 1970)

The number of Dyck paths of length $2 n$ with height at most d is C_{n}^{d} and

$$
C^{d}(x)=\frac{x F_{d+1}(x)}{F_{d+2}(x)}
$$

where $F_{i}(x):=i$ for $i=0,1$, and $F_{n}(x):=F_{n-1}(x)-x F_{n-2}(x), n \geq 2$.

Theorem (de Bruijn-Knuth-Rice 1972)

The number of plane trees with $n+1$ nodes of depth at most d is

$$
C_{n}^{d}=\frac{2^{2 n+1}}{d+2} \sum_{1 \leq j \leq d+1} \sin ^{2}(j \pi /(d+2)) \cos ^{2 n}(j \pi /(d+2))
$$

Moreover, $F_{n}(x)=\sum_{0 \leq i \leq(n-1) / 2}\binom{n-1-i}{i}(-x)^{i}, \quad \forall n \geq 1$.

Recent results on C_{n}^{d}

Theorem (Andrews-Krattenthaler-Orsina-Papi 2002)

The number of ad-nilpotent ideals of the Borel subalgebra \mathfrak{b} of the Lie algebra $\mathfrak{s l}_{n}(\mathbb{C})$ with order at most $d-1$ is

$$
\begin{aligned}
C_{n}^{d} & =\sum_{i \in \mathbb{Z}} \frac{2 i(d+2)+1}{2 n+1}\binom{2 n+1}{n-i(d+2)} \\
& =\operatorname{det}\left[\binom{i-\max \{-1, j-d\}}{j-i+1}\right]_{i, j=1}^{n-1} \\
& =\sum_{0=i_{0} \leq i_{1} \leq \cdots \leq i_{d-1} \leq i_{d}=n} \prod_{0 \leq j \leq d-2}\binom{i_{j+2}-i_{j}-1}{i_{j+1}-i_{j}} .
\end{aligned}
$$

Recent results on C_{n}^{d}

Theorem (Andrews-Krattenthaler-Orsina-Papi 2002)

The number of ad-nilpotent ideals of the Borel subalgebra \mathfrak{b} of the Lie algebra $\mathfrak{s l}_{n}(\mathbb{C})$ with order at most $d-1$ is

$$
\begin{aligned}
C_{n}^{d} & =\sum_{i \in \mathbb{Z}} \frac{2 i(d+2)+1}{2 n+1}\binom{2 n+1}{n-i(d+2)} \\
& =\operatorname{det}\left[\binom{i-\max \{-1, j-d\}}{j-i+1}\right]_{i, j=1}^{n-1} \\
& =\sum_{0=i_{0} \leq i_{1} \leq \cdots \leq i_{d-1} \leq i_{d}=n} \prod_{0 \leq j \leq d-2}\binom{i_{j+2}-i_{j}-1}{i_{j+1}-i_{j}} .
\end{aligned}
$$

Theorem (Kitaev-Remmel-Tiefenbruck 2012)

The number of permutations in the symmetric group \mathfrak{S}_{n} avoiding 132 and $123 \cdots(d+1)$ is C_{n}^{d}.

New results on C_{n}^{d}

Definition

A composition of n is a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of positive integers such that $\alpha_{1}+\cdots+\alpha_{\ell}=n$. Let $\max (\alpha):=\max \left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ and $\ell(\alpha)=\ell$.

New results on C_{n}^{d}

Definition

A composition of n is a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of positive integers such that $\alpha_{1}+\cdots+\alpha_{\ell}=n$. Let $\max (\alpha):=\max \left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ and $\ell(\alpha)=\ell$.

Theorem (Hein and H. 2019+)

For $n, d \geq 1$, we have

$$
C_{n}^{d}=\sum_{\substack{\alpha \models n \\ \max (\alpha) \leq(d+1) / 2}}(-1)^{n-\ell(\alpha)}\binom{d-\alpha_{1}}{\alpha_{1}-1} \prod_{2 \leq i \leq \ell(\alpha)}\binom{d+1-\alpha_{i}}{\alpha_{i}}
$$

New results on C_{n}^{d}

Definition

A composition of n is a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of positive integers such that $\alpha_{1}+\cdots+\alpha_{\ell}=n$. Let $\max (\alpha):=\max \left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ and $\ell(\alpha)=\ell$.

Theorem (Hein and H. 2019+)

For $n, d \geq 1$, we have

$$
C_{n}^{d}=\sum_{\substack{\alpha \models n \\ \max (\alpha) \leq(d+1) / 2}}(-1)^{n-\ell(\alpha)}\binom{d-\alpha_{1}}{\alpha_{1}-1} \prod_{2 \leq i \leq \ell(\alpha)}\binom{d+1-\alpha_{i}}{\alpha_{i}}
$$

Theorem (Hein and H. 2019+)

For $n, d \geq 1$, the number C_{n}^{d} enumerates nilpotent ideals of the algebra \mathcal{U}_{n} of n-by-n upper triangular matrices with order at most d.

Ideals of upper triangular matrices

Definition

- Let \mathcal{U}_{n} be the algebra of all n-by- n upper triangular matrices

$$
\left(\begin{array}{ccccc}
* & * & * & \cdots & * \\
0 & * & * & \cdots & * \\
0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & *
\end{array}\right)
$$

where a star $*$ is an arbitrary entry from a fixed field \mathbb{F} (e.g., \mathbb{R}).

Ideals of upper triangular matrices

Definition

- Let \mathcal{U}_{n} be the algebra of all n-by- n upper triangular matrices

$$
\left(\begin{array}{ccccc}
* & * & * & \cdots & * \\
0 & * & * & \cdots & * \\
0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & *
\end{array}\right)
$$

where a star $*$ is an arbitrary entry from a fixed field \mathbb{F} (e.g., \mathbb{R}).

- A (two-sided) ideal I of \mathcal{U}_{n} is a vector subspace of \mathcal{U}_{n} such that $X I \subseteq I$ and $I X \subseteq I$ for all $X \in \mathcal{U}_{n}$.

Ideals of upper triangular matrices

Definition

- Let \mathcal{U}_{n} be the algebra of all n-by- n upper triangular matrices

$$
\left(\begin{array}{ccccc}
* & * & * & \cdots & * \\
0 & * & * & \cdots & * \\
0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & *
\end{array}\right)
$$

where a star $*$ is an arbitrary entry from a fixed field \mathbb{F} (e.g., \mathbb{R}).

- A (two-sided) ideal I of \mathcal{U}_{n} is a vector subspace of \mathcal{U}_{n} such that $X I \subseteq I$ and $I X \subseteq I$ for all $X \in \mathcal{U}_{n}$.
- A ideal I is nilpotent if $I^{k}=0$ for some $k \geq 1$. The smallest k such that $I^{k}=0$ is the (nilpotent) order of I.

Ideals of upper triangular matrices

Definition

- Let \mathcal{U}_{n} be the algebra of all n-by- n upper triangular matrices

$$
\left(\begin{array}{ccccc}
* & * & * & \cdots & * \\
0 & * & * & \cdots & * \\
0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & *
\end{array}\right)
$$

where a star $*$ is an arbitrary entry from a fixed field \mathbb{F} (e.g., \mathbb{R}).

- A (two-sided) ideal I of \mathcal{U}_{n} is a vector subspace of \mathcal{U}_{n} such that $X I \subseteq I$ and $I X \subseteq I$ for all $X \in \mathcal{U}_{n}$.
- A ideal I is nilpotent if $I^{k}=0$ for some $k \geq 1$. The smallest k such that $I^{k}=0$ is the (nilpotent) order of I.
- A ideal I of \mathcal{U}_{n} is commutative if $A B=B A$ for all $A, B \in I$.

Nilpotent ideals

Example (A nilpotent ideal of \mathcal{U}_{6} and its corresponding Dyck path)

$$
I=\left[\begin{array}{cccccc}
0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Nilpotent ideals

Example (A nilpotent ideal of \mathcal{U}_{6} and its corresponding Dyck path)

$$
I=\left[\begin{array}{cccccc}
0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Observation

- A nilpotent ideal of \mathcal{U}_{n} is represented by a matrix of 0 's and *'s separated by a Dyck path of length $2 n$.

Nilpotent ideals

Example (A nilpotent ideal of \mathcal{U}_{6} and its corresponding Dyck path)

$$
I=\left[\begin{array}{cccccc}
0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

height $=3$

Observation

- A nilpotent ideal of \mathcal{U}_{n} is represented by a matrix of 0 's and *'s separated by a Dyck path of length $2 n$.

Nilpotent ideals

Example (A nilpotent ideal of \mathcal{U}_{6} and its corresponding Dyck path)

$$
I=\left[\begin{array}{cccccc}
0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

height $=3$

Observation

- A nilpotent ideal of \mathcal{U}_{n} is represented by a matrix of 0 's and *'s separated by a Dyck path of length $2 n$.
- The number of such ideals is the Catalan number $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$.

Nilpotent ideals

Example (A nilpotent ideal of \mathcal{U}_{6} and its corresponding Dyck path)

$$
I=\left[\begin{array}{cccccc}
0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

height $=3$

Observation

- A nilpotent ideal of \mathcal{U}_{n} is represented by a matrix of 0 's and *'s separated by a Dyck path of length $2 n$.
- The number of such ideals is the Catalan number $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$.
- The number of all ideals of \mathcal{U}_{n} is the Catalan number C_{n+1}.

Nilpotent order

Proposition (L. Shapiro, 1975)

The number of commutative ideals of \mathcal{U}_{n} is $2^{n-1}\left(=C_{n}^{2}\right)$. (Direct proof?)

Nilpotent order

Proposition (L. Shapiro, 1975)

The number of commutative ideals of \mathcal{U}_{n} is $2^{n-1}\left(=C_{n}^{2}\right)$. (Direct proof?)

Observation

- An ideal of \mathcal{U}_{n} is commutative iff it has nilpotent order 1 or 2.

Nilpotent order

Proposition (L. Shapiro, 1975)

The number of commutative ideals of \mathcal{U}_{n} is $2^{n-1}\left(=C_{n}^{2}\right)$. (Direct proof?)

Observation

- An ideal of \mathcal{U}_{n} is commutative iff it has nilpotent order 1 or 2.
- The order of a nilpotent ideal I of \mathcal{U}_{n} is the largest length d of a sequence $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$ such that ${l_{j}, i_{j+1}}=*$ for all $j=1,2, \ldots, d-1$.

Nilpotent order

Proposition (L. Shapiro, 1975)

The number of commutative ideals of \mathcal{U}_{n} is $2^{n-1}\left(=C_{n}^{2}\right)$. (Direct proof?)

Observation

- An ideal of \mathcal{U}_{n} is commutative iff it has nilpotent order 1 or 2.
- The order of a nilpotent ideal I of \mathcal{U}_{n} is the largest length d of a sequence $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$ such that $i_{i_{j}, i_{j+1}}=*$ for all $j=1,2, \ldots, d-1$.

Example

$I=\left[\begin{array}{llllll}0 & 0 & * & * & * & * \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
has nilpotent order 4 by the sequence $(1,3,5,6)$.

Bounce Paths

Observation

The nilpotent order of an ideal I of \mathcal{U}_{n} is the number of times the bounce path of its corresponding Dyck path D goes off the main diagonal.

Bounce Paths

Observation

The nilpotent order of an ideal I of \mathcal{U}_{n} is the number of times the bounce path of its corresponding Dyck path D goes off the main diagonal.

Example (Bounce Path)

Bounce Paths

Observation

The nilpotent order of an ideal I of \mathcal{U}_{n} is the number of times the bounce path of its corresponding Dyck path D goes off the main diagonal.

Example (Bounce Path)

- The bounce path has 4 bounces.
- The Dyck path D has height 3 .

Bounce Paths

Observation

The nilpotent order of an ideal I of \mathcal{U}_{n} is the number of times the bounce path of its corresponding Dyck path D goes off the main diagonal.

Example (Bounce Path)

- The bounce path has 4 bounces.
- The Dyck path D has height 3 .

Fact (Andrews-Krattenthaler-Orsina-Papi 2002, Haglund 2008)

Bijection ζ : Dyck paths with height $d \leftrightarrow$ Dyck paths with d bounces.

More on nilpotent ideals

Theorem (Hein and H. 2019+)

For $n, d \geq 1$, the number C_{n}^{d} enumerates nilpotent ideals of the algebra \mathcal{U}_{n} of n-by-n upper triangular matrices with order at most d.

More on nilpotent ideals

Theorem (Hein and H. 2019+)

For $n, d \geq 1$, the number C_{n}^{d} enumerates nilpotent ideals of the algebra \mathcal{U}_{n} of n-by-n upper triangular matrices with order at most d.

Proof.

By the argument on previous slides, the number of nilpotent ideals of \mathcal{U}_{n} with order at most d equals the number of Dyck paths of length $2 n$ with height at most d; the latter is C_{n}^{d} by Kreweras (1970).

More on nilpotent ideals

Theorem (Hein and H. 2019+)

For $n, d \geq 1$, the number C_{n}^{d} enumerates nilpotent ideals of the algebra \mathcal{U}_{n} of n-by-n upper triangular matrices with order at most d.

Proof.

By the argument on previous slides, the number of nilpotent ideals of \mathcal{U}_{n} with order at most d equals the number of Dyck paths of length $2 n$ with height at most d; the latter is C_{n}^{d} by Kreweras (1970).

Problem

- Find a natural order-preserving bijection between nilpotent ideals of \mathcal{U}_{n} and ad-nilpotent ideals of \mathfrak{b}. (The exponential map?)

More on nilpotent ideals

Theorem (Hein and H. 2019+)

For $n, d \geq 1$, the number C_{n}^{d} enumerates nilpotent ideals of the algebra \mathcal{U}_{n} of n-by-n upper triangular matrices with order at most d.

Proof.

By the argument on previous slides, the number of nilpotent ideals of \mathcal{U}_{n} with order at most d equals the number of Dyck paths of length $2 n$ with height at most d; the latter is C_{n}^{d} by Kreweras (1970).

Problem

- Find a natural order-preserving bijection between nilpotent ideals of \mathcal{U}_{n} and ad-nilpotent ideals of \mathfrak{b}. (The exponential map?)
- The result on nilpotent ideas of \mathfrak{b} has been generalized from type A to other types [Krattenthaler-Orsina-Papi 2002]. Is there a similar generalization for nilpotent ideals of \mathcal{U}_{n} ?

The case $e=\ell=1$: k-associativity at left depth d

Theorem (Hein and H. 2019+)

We have $C_{2, n}^{d}=C_{1, n}^{d+1}$ and for $d, k \geq 1$ and $n \geq 0$,

$$
\begin{aligned}
C_{3, n}^{d}= & \sum_{\substack{\alpha=n+1 \\
n>1=\alpha_{h} \leq d+1}}-\left(C_{3, \alpha_{1}-d-2}^{0}+\frac{\delta_{\alpha 1, d}}{2}+(-1)^{\alpha_{1}} \sum_{i+j=\alpha_{1}-1}\binom{d-i}{i}\binom{d+1-j}{j}\right) \\
& \prod_{n \geq 2}\left(\left(\left(\delta_{\alpha_{h, d}}+(-1)^{\alpha_{h}-1} \sum_{i+j=\alpha_{h}}\binom{d+1-i}{i}\binom{d+1-j}{j}\right)\right)\right. \\
C_{k, n}^{2}= & 1+\sum_{1 \leq i \leq n-1} \frac{i}{n-i} \sum_{0 \leq j \leq(n-i-1) / k}(-1)^{j}\binom{n-i}{j}\binom{2 n-i-j k-1}{n} \\
= & 1+\sum_{1 \leq i \leq n-1} \sum_{\lambda \subseteq(k-1)^{n-i}} \frac{n-i-|\lambda|}{n-i}\binom{n-|\lambda|-1}{n-|\lambda|-i} m_{\lambda}\left(1^{n-i}\right) .
\end{aligned}
$$

A final question

Conjecture

For $k, \ell \geq 1$ and $n \geq 0$ the equality $C_{k, \ell, n}=C_{k+\ell-1, n}$ holds.

A final question

Conjecture

For $k, \ell \geq 1$ and $n \geq 0$ the equality $C_{k, \ell, n}=C_{k+\ell-1, n}$ holds.

Thank you!

