Norton algebras of some distance regular graphs

Jia Huang
University of Nebraska at Kearney
E-mail address: huangj2@unk.edu
Centre de Recherches Mathématiques
Université de Montréal
August 2022

Distance regular graphs

- Let Γ be a distance regular graph with vertex set X, i.e., for any integers $i, j, k \geq 0$ and any pair $(x, y) \in X \times X$ with $d(x, y)=k$, the following intersection number does not depend on the choice of (x, y) :

$$
p_{i j}^{k}:=\#\{z \in X: d(x, z)=i, d(y, z)=j\} .
$$

- Suppose that Γ has diameter $d:=\max \{d(x, y): x, y \in X\}$. Then the adjacency matrix of Γ has distinct eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$, each of the same algebraic and geometric multiplicities.
- The vector space $\mathbb{R}^{X}:=\{f: X \rightarrow \mathbb{R}\} \cong \mathbb{R}^{|X|}$ is a direct sum of the eigenspaces $V_{0}, V_{1}, \ldots, V_{d}$ of the eigenvalues $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$.
- The eigenvalues and eigenspaces of Γ has many nice properties.

Hamming graphs

- The Hamming graph $H(n, e)$ has
- vertex set $X=\left\{w_{1} w_{2} \cdots w_{n}: w_{i} \in\{0,1, \ldots, e-1\}\right\}$ and
- edge set $E=\{w u: w$ and u differ in precisely one position $\}$.
- The Hamming graph $H(n, 2)=Q_{n}$ is known as the hypercube graph.

- Two vertices have distance i iff they differ in precisely i positions.
- $H(n, e)$ is a distance regular graph of diameter $d=n$, whose i th eigenvalue is $\theta_{i}=(n-i) e-n$ with multiplicity $\operatorname{dim}\left(V_{i}\right)=\binom{n}{i}(e-1)^{i}$.
- The automorphism group of $H(n, e)$ is the wreath product $\mathfrak{S}_{e} \ell \mathfrak{S}_{n}$.

Norton algebra

- Orthogonal projection $\pi_{i}: \mathbb{R}^{X}=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{d} \rightarrow V_{i}$.
- Entry-wise product: $(u \cdot v)(x):=u(x) v(x), \forall u, v \in \mathbb{R}^{X}, \forall x \in X$.
- Define the Norton product on V_{i} by $u \star v:=\pi_{i}(u \cdot v), \forall u, v \in V_{i}$.
- The Norton algebra $\left(V_{i}, \star\right)$ is commutative but not associative.
- The Norton algebras have interesting automorphism groups and are related to the construction of the monster simple group.
- We determine the Norton algebras of certain distance regular graphs.
- We investigate the automorphism group of the Norton algebra.
- We also measure the nonassociativity of the Norton product \star.

Nonassociativity of binary operation

- Let $*$ be a binary operation on a set X. Let $x_{0}, x_{1}, \ldots, x_{n}$ be X-valued indeterminates.
- If $*$ is associative then the expression $x_{0} * x_{1} * \cdots * x_{n}$ is unambiguous. Example: $x_{0}+x_{1}+\cdots+x_{n}$.
- If $*$ is nonassociative then $x_{0} * x_{1} * \cdots * x_{n}$ depends on parentheses. The number of ways to parenthesize $x_{0} * x_{1} * \cdots * x_{n}$ is the Catalan number $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$, e.g., $\left(C_{n}\right)_{n=0}^{6}=(1,1,2,5,14,42,132)$.

$$
\left.\begin{array}{l}
\left(\left(x_{0}-x_{1}\right)-x_{2}\right)-x_{3}=x_{0}-x_{1}-x_{2}-x_{3} \\
\left(x_{0}-x_{1}\right)-\left(x_{2}-x_{3}\right)=x_{0}-x_{1}-x_{2}+x_{3} \\
\left(x_{0}-\left(x_{1}-x_{2}\right)\right)-x_{3}=x_{0}-x_{1}+x_{2}-x_{3} \\
x_{0}-\left(\left(x_{1}-x_{2}\right)-x_{3}\right)=x_{0}-x_{1}+x_{2}+x_{3} \\
x_{0}-\left(x_{1}-\left(x_{2}-x_{3}\right)\right)=x_{0}-x_{1}+x_{2}-x_{3}
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
C_{3}=5 \\
C_{-, 3}=4 \\
\widetilde{C}_{-, 3}=2
\end{array}\right.
$$

Nonassocitivity measurements

- Parenthesizations of $x_{0} * x_{1} * \cdots * x_{n}$ are $*$-equivalent if they give the same function from X^{n+1} to X. Let $C_{*, n}$ and $\widetilde{C}_{*, n}$ be the number of *-equivalence classes and the largest size of an $*$-equivalence class.
- In general, $1 \leq C_{*, n} \leq C_{n}$ and $1 \leq \widetilde{C}_{*, n} \leq C_{n}$. Moreover, we have $C_{*, n}=1, \forall n \geq 0 \Leftrightarrow *$ is associative $\Leftrightarrow \widetilde{C}_{*, n}=C_{n}, \forall n \geq 0$. Thus $C_{*, n}$ and $\widetilde{C}_{*, n}$ measure how far $*$ is from being associative.
- Csákány and Waldhauser called $C_{*, n}$ the associative spectrum of $*$ while Braitt and Silberger called it the subassociativity type.
- Independently, we studied $C_{*, n}$ and $\widetilde{C}_{*, n}$ for a family of binary operations generalizing + and - (defined by using roots of unity and nilpotent elements in $\mathbb{C}[x, y]$) in joint work with Hein.
- Say $*$ is totally nonassociative if $C_{*, n}=C_{n}\left(\right.$ or $\left.\widetilde{C}_{*, n}=1\right), \forall n \geq 0$.

Double Minus

Definition

- Define double minus operation $a \ominus b:=-a-b$ for all $a, b \in \mathbb{R}$.
- Let $C_{\ominus, n, r}$ be the number of distinct results from $x_{0} \ominus x_{1} \ominus \cdots \ominus x_{n}$ with exactly r plus signs, so $C_{\ominus, n}:=\sum_{0 \leq r \leq n+1} C_{\ominus, n, r}$.

Theorem (H., Mickey, and Xu 2017)

- If $n \geq 1$ and $0 \leq r \leq n+1$ then

$$
C_{\ominus, n, r}=\left\{\begin{array}{lll}
\binom{n+1}{r}, & \text { if } n+r \equiv 1 \quad(\bmod 3) \text { and } n \neq 2 r-2, \\
\binom{n+1}{r}-1, & \text { if } n+r \equiv 1 \quad(\bmod 3) \text { and } n=2 r-2, \\
0, & \text { if } n+r \not \equiv 1 \quad(\bmod 3) .
\end{array}\right.
$$

- For $n \geq 1$ we have $C_{\ominus, n}= \begin{cases}\frac{2^{n+1}-1}{3}, & \text { if } n \text { is odd; } \\ \frac{2^{n+1}-2}{3}, & \text { if } n \text { is even. }\end{cases}$

A truncated/modified Pascal Triangle

Example ($C_{\ominus, n, r}$ for $n \leq 10$ and $0 \leq r \leq n+1$)

r	0	1	2	3	4	5	6	7	8	9	10	11
$C_{\ominus, 0, r}$		1										
$C_{\ominus, 1, r}$	1											
$C_{\ominus, 2, r}$			2									
$C_{\ominus, 3, r}$		4			1							
$C_{\ominus, 4, r}$	1			9								
$C_{\ominus, 5, r}$			15			6						
$C_{\ominus, 6, r}$		7			34			1				
$C_{\ominus, 7, r}$	1			56			28					
$C_{\ominus, 8, r}$			36			125			9			
$C_{\ominus, 9, r}$		10			210			120			1	
$C_{\ominus, 10, r}$	1			165			461		55			

OEIS A000975

Definition

The sequence $\underline{\text { A000975 }}\left(A_{n}: n \geq 1\right)=(1,2,5,10,21,42,85, \ldots)$ in OEIS has many equivalent characterizations, such as the following.

- $A_{1}=1, A_{n+1}=2 A_{n}$ if n is odd, and $A_{n+1}=2 A_{n}+1$ if n is even.
- A_{n} is the integer with an alternating binary representation of length n. $\left(1=1_{2}, 2=10_{2}, 5=101_{2}, 10=1010_{2}, 21=10101_{2}, \ldots\right)$
- $A_{n}=\left\lfloor\frac{2^{n+1}}{3}\right\rfloor=\frac{2^{n+2}-3-(-1)^{n}}{6}= \begin{cases}\frac{2^{n+1}-1}{3}, & \text { if } n \text { is odd; } \\ \frac{2^{n+1}-2}{3}, & \text { if } n \text { is even. }\end{cases}$
- A_{n} is the number of moves to solve the n-ring Chinese Rings puzzle. $n=4: 0000-0001-0011-0010-0110-0111-0101-0100-1100-1101-1111$

Question

- Bijections between different objects enumerated by A_{n} ?
- Any formula for $\widetilde{\mathcal{C}}_{\ominus, n}$? $(1,1,1,2,3,5,9,16,28,54,99, \ldots)$

Norton algebra of Hamming graph

Theorem (H. 2021)

- Each eigenspace V_{i} of $H(n, e)$ has a basis $\left\{\tau_{u}: u \in X_{i}\right\}$, where X_{i} is the set of vertices with exactly i nonzero entries.
- If $u, v \in X_{i}$ then with $u+v$ defined component-wise modulo e,

$$
\tau_{u} \star \tau_{v}= \begin{cases}\tau_{u+v} & \text { if } u+v \in X_{i} \\ 0 & \text { otherwise }\end{cases}
$$

- For $e \geq 3$, the automorphism group of $\left(V_{i}, \star\right)$ is trivial if $i=0$, is isomorphic to $\left.\mathfrak{S}_{e}\right\} \mathfrak{S}_{n}$ if $i=1$ or $\left.\mathfrak{S}_{3}\right\} \mathfrak{S}_{2^{n-1}}$ if $i=n$ and $e=3$, and admits a subgroup isomorphic to $\left.\left(\mathbb{Z}_{e} \rtimes \mathbb{Z}_{e}^{\times}\right)\right\} \mathfrak{S}_{n}$ if $i \geq 1$.
- The product \star on V_{i} is associative if $i=0$, equally as nonassociative as the double minus operation \ominus if $e=3$ and $i \in\{1, n\}$, or totally nonassociative if $e=3$ and $1<i<n$ or if $e \geq 4$ and $1 \leq i \leq n$.

Examples: $H(2,3)$ and $H(3,2)$

Example $(H(2,3))$

\star	τ_{01}	τ_{02}	τ_{10}	τ_{20}		\star	τ_{11}	τ_{12}	τ_{21}	τ_{22}
τ_{01}	τ_{02}	0	0	0		τ_{11}	τ_{22}	0	0	0
τ_{02}	0	τ_{01}	0	0		τ_{12}	0	τ_{21}	0	0
τ_{10}	0	0	τ_{20}	0		τ_{21}	0	0	τ_{12}	0
τ_{20}	0	0	0	τ_{10}		τ_{22}	0	0	0	τ_{11}
	$V_{1}(H(2,3))$					$V_{2}(H(2,3))$				

Example (H(3, 2))

The Norton algebra $V_{2}(H(3,2))$ has a basis $\left\{\tau_{R}, \tau_{S}, \tau_{T}\right\}$, where $R=\{1,2\}, S=\{1,3\}, T=\{2,3\}$. We have

$$
\begin{gathered}
\tau_{R} \star \tau_{R}=\tau_{S} \star \tau_{S}=\tau_{T} \star \tau_{T}=0 \\
\tau_{R} \star \tau_{S}=\tau_{T}, \quad \tau_{S} \star \tau_{T}=\tau_{R}, \quad \text { and } \quad \tau_{T} \star \tau_{R}=\tau_{S}
\end{gathered}
$$

Norton algebra of the hypercube

Theorem (H. 2021)

- Each eigenspace V_{i} of Q_{n} has a basis $\left\{\chi_{s}: S \subseteq[n],|S|=i\right\}$.
- If $S, T \subseteq[n]$ with $|S|=|T|=i$ then

$$
\chi_{S} \star \chi_{T}= \begin{cases}\chi_{S \triangle T} & \text { if }|S \triangle T|=i \\ 0 & \text { otherwise }\end{cases}
$$

where $S \triangle T:=(S-T) \cup(T-S)$.

- The automorphism group of $\left(V_{i}, \star\right)$ is trivial if $i=0$, equals the general linear group of V_{i} if $i>\lfloor 2 n / 3\rfloor$ or i is odd, and admits $\mathfrak{S}_{n}^{B} /\{ \pm 1\}$ as a subgroup if $1 \leq i<n$ is even $\left(\mathfrak{S}_{n}^{B} \cong \mathbb{Z}_{2} \imath \mathfrak{S}_{n}\right)$.
- The product \star on V_{i} is associative if $i=0, i>\lfloor 2 n / 3\rfloor$ or i is odd, but totally nonassociative otherwise.

Linear characters and Cayley graphs

- A linear character of a group G is a homomorphism $\chi: G \rightarrow \mathbb{C}^{\times}$from G to the multiplicative group of nonzero complex numbers.
- The linear characters of G form an abelian group G^{*} under the entry-wise product defined by

$$
\left(\chi \cdot \chi^{\prime}\right)(g):=\chi(g) \chi^{\prime}(g) \text { for all } \chi, \chi^{\prime} \in G^{*} \text { and } g \in G
$$

- Assume G is abelian. Then G^{*} is isomorphic to G and is an (orthonormal) basis for the space $\mathbb{C}^{G}:=\{\phi: G \rightarrow \mathbb{C}\} \cong \mathbb{C}^{|G|}$.
- Let G be a finite abelian group expressed additively, and let S be a subset of $G-\{0\}$ such that $s \in S \Rightarrow-s \in S$.
- The Cayley graph $\Gamma(G, S)$ of G with respect to S has vertex set $X=G$ and edge set $E=\{x y: y-x \in S\}$.

Cayley graphs of finite abelian groups

Theorem (Well-known, see [Exercise 11.8, Lovasz 1979])

For any Cayley graph $\Gamma=\Gamma(X, S)$ of a finite abelian group X, the linear characters of X form an eigenbasis of Γ with each linear character χ corresponding to the eigenvalue $\chi(S):=\sum_{s \in S} \chi(s)$.
(This can be extended to the nonabelian case [Babai 1979, Lovász 1975].)

Theorem (H. 2021)

For any Cayley graph $\Gamma(X, S)$ of a finite abelian group X, we can define the Norton product $\chi \star \chi^{\prime}$ of two linear characters χ and χ^{\prime} in the same eigenspace by projecting the entry-wise product $\chi \cdot \chi^{\prime}$ back to this eigenspace, and this product satisfies

$$
\chi \star \chi^{\prime}= \begin{cases}\chi \cdot \chi^{\prime} & \text { if }\left(\chi \cdot \chi^{\prime}\right)(S)=\chi(S) \\ 0, & \text { otherwise }\end{cases}
$$

Other distance regular Cayley graphs

- The folded cube \square_{n} can be obtained from Q_{n} by identifying each pair of vertices at distance n from each other.
- The half-cube $\frac{1}{2} Q_{n}$ can be obtained from the hypercube Q_{n} by selecting vertices with an even number of ones and drawing edges between pairs of vertices differing in exactly two positions.
- The folded half-cube $\frac{1}{2} \square_{n}$ is obtained from Q_{n} by folding and halving.
- The bilinear forms graph $H_{q}(d, e)$ has vertex set $X=\operatorname{Mat}_{d, e}\left(\mathbb{F}_{q}\right)$ consisting of all $d \times e$ matrices over a finite field \mathbb{F}_{q} and has edge set E consisting of unordered pairs of $x, y \in X$ with $\operatorname{rank}(x-y)=1$.
- Our linear character approach applies to the above distance regular graphs, as they are all Cayley graphs of finite abelian groups.

Johnson graphs

- The Johnson graph $J(n, k)=(X, E)$ has
- vertex set $X=\{k$-subsets of $[n]:=\{1, \ldots, n\}\}$ and
- edge set $E=\{x y: x, y \in X,|x \cap y|=k-1\}$.
- For any $x, y \in X$, we have $d(x, y)=j$ if and only if $|x \cap y|=k-j$.
- We may assume $n \geq 2 k$ since $J(n, k) \cong J(n, n-k)$ by taking set complement $\left(|x \cap y|=k-1 \Leftrightarrow\left|x^{c} \cap y^{c}\right|=n-k-1\right)$.
- The number of vertices at distance r from any vertex is $\binom{k}{r}\binom{n-k}{r}$.
- Thus $J(n, k)$ is a distance-regular graph with diameter $d=k$.
- $J(n, 1)$ is the complete graph K_{n} and $J(n, 2)$ is the line graph of K_{n}.
- The i th eigenvalue of $J(n, k)$ is $\theta_{i}=(k-i)(n-k-i)-i$ whose multiplicity is $\operatorname{dim}\left(V_{i}\right)=\binom{n}{i}-\binom{n}{i-1}$.

Grassmann graphs and dual polar graphs

- The Grassmann graph $J_{q}(n, k)$ is a q-analogue of $J(n, k)$, with
- vertex set $X=\left\{k\right.$-dimensional subspaces of $\left.\mathbb{F}_{q}^{n}\right\}$, and
- edge set $\{x y: x, y \in X, \operatorname{dim}(x \cap y)=k-1\}$.
- Given a vector space V with a quadratic/symplectic/Hermitian form, the dual polar graph Γ has
- vertex set $X=\{$ maximal isotropic subspaces of $V\}$, and
- edge set $E=\{x y: x, y \in X, \operatorname{dim}(x \cap y)=d-1\}$, where $d:=\operatorname{dim}(x)$, $\forall x \in X$ is well defined and is the diameter of Γ.
- The Grassmann graphs and dual polar graphs are distance regular.
- Levstein, Maldonado, and Penazzi $(2009,2012)$ determined the Norton algebra $\left(V_{1}, \star\right)$ of Johnson, Grassmann, and dual polar graphs.
- We measured the nonassociativity of $\left(V_{1}, \star\right)$ for these graphs (2020).

Lattice associated with distance regular graphs

Theorem (Levstein, Maldonado, and Penazzi, 2009, 2012)

Let $\Gamma=(X, E)$ be $J(n, d), J_{q}(n, d), H(d, 2)$ or a dual polar graph of diameter d. There is a graded lattice $L=L_{0} \sqcup L_{1} \sqcup \cdots \sqcup L_{d+1}$ with $L_{0}=\{\hat{0}\}, L_{d}=X, L_{d+1}=\hat{1}$, such that the following holds.
(i) There is a filtration $\Lambda_{0} \subseteq \Lambda_{1} \subseteq \cdots \subseteq \Lambda_{d}=\mathbb{R}^{X}$, where Λ_{i} is the span of the functions $\imath_{v} \in \mathbb{R}^{X}$ defined below for all $v \in L_{i}$:

$$
\imath_{v}(x):= \begin{cases}1 & \text { if } v \leq x \\ 0 & \text { otherwise }\end{cases}
$$

(ii) We have $V_{0}=\Lambda_{0}=\mathbb{R} \mathbf{1}$ and $V_{i}=\Lambda_{i} \cap \Lambda_{i-1}^{\perp}$ for $i=1,2, \ldots, d$.
(iii) The set $\left\{\check{v}: v \in L_{1}\right\}$ spans V_{1}, where $\check{v}:=\pi_{1}\left(\imath_{v}\right)=\imath_{v}-\frac{a_{1}}{|X|} \mathbf{1}$ with $a_{1}:=\#\{x \in X: x \geq v\}$ not depending on the choice of v.

Remark

The above result is still valid for the Hamming graph $H(d, e)$.

Norton algebra $\left(V_{1}, \star\right)$

Theorem (Maldonado and Penazzi, 2012)

The eigenspace V_{1} of the Johnson graph $J(n, k)$ has a spanning set $\left\{\check{v}_{1}, \ldots, \check{v}_{n}\right\}$ such that if $u, v \in L_{1}$ then

$$
\check{u} \star \check{v}= \begin{cases}\left(1-\frac{2 k}{n}\right) \check{v} & \text { if } u=v \\ \frac{2 k-n}{n(n-2)}(\check{u}+\check{v}) & \text { if } u \neq v .\end{cases}
$$

Proposition (H. 2020)

- If $n>2 k$ the Norton algebra $V_{1}(J(n, k))$ is isomorphic to $V_{1}(H(1, n))$.
- For $k \geq 2$ the Norton algebra $V_{1}\left(J_{q}(n, k)\right)$ is totally nonassociative.
- The Norton algebra $\left(V_{1}, \star\right)$ of a dual polar graph 「 is totally nonassociative if $\Gamma \neq D_{2}(2)$ or equally as nonassociative as the double minus operation \ominus if $\Gamma=D_{2}(2)$.

Questions and remarks

- Terwilliger (2021) obtained nice formulas for the Norton algebra $\left(V_{1}, \star\right)$ of all Q-polynomial distance regular graphs. What about the Norton algebra $\left(V_{i}, \star\right)$ for $i>1$?
- For a Cayley graph we can extend scalars to complex numbers and use linear characters, even though the adjacency matrix of any graph is a real symmetric matrix with real eigenvalues and eigenspaces.
- The eigenspaces of $J(n, k)$ can be constructed by linear algebra (Burcroff 2017) or representation theory (Krebs and Shaheen 2008)
- The Norton algebras we have studied so far are either associative, totally nonassociative, or equally as nonassociative as the double minus operation \ominus. Is there any intuitive explanation for this?

Thank you!

