Norton algebras of some distance regular graphs

Jia Huang

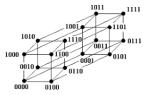
University of Nebraska at Kearney *E-mail address*: huangj2@unk.edu

Centre de Recherches Mathématiques Université de Montréal August 2022

- Let Γ be a *distance regular* graph with vertex set X, i.e., for any integers i, j, k ≥ 0 and any pair (x, y) ∈ X × X with d(x, y) = k, the following *intersection number* does not depend on the choice of (x, y):
 p^k_{ij} := #{z ∈ X : d(x, z) = i, d(y, z) = j}.
- Suppose that Γ has diameter $d := \max\{d(x, y) : x, y \in X\}$. Then the adjacency matrix of Γ has distinct eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_d$, each of the same algebraic and geometric multiplicities.
- The vector space $\mathbb{R}^X := \{f : X \to \mathbb{R}\} \cong \mathbb{R}^{|X|}$ is a direct sum of the eigenspaces V_0, V_1, \ldots, V_d of the eigenvalues $\theta_0, \theta_1, \ldots, \theta_d$.
- The eigenvalues and eigenspaces of Γ has many nice properties.

Hamming graphs

- The Hamming graph H(n, e) has
 - vertex set $X = \{w_1 w_2 \cdots w_n : w_i \in \{0, 1, \dots, e-1\}\}$ and
 - edge set $E = \{wu : w \text{ and } u \text{ differ in precisely one position}\}.$
- The Hamming graph $H(n, 2) = Q_n$ is known as the hypercube graph.



- Two vertices have distance *i* iff they differ in precisely *i* positions.
- H(n, e) is a distance regular graph of diameter d = n, whose ith eigenvalue is θ_i = (n i)e n with multiplicity dim(V_i) = (ⁿ_i)(e 1)ⁱ.
- The automorphism group of H(n, e) is the wreath product $\mathfrak{S}_e \wr \mathfrak{S}_n$.

- Orthogonal projection $\pi_i : \mathbb{R}^X = V_0 \oplus V_1 \oplus \cdots \oplus V_d \to V_i$.
- Entry-wise product: $(u \cdot v)(x) := u(x)v(x), \forall u, v \in \mathbb{R}^X, \forall x \in X.$
- Define the *Norton product* on V_i by $u \star v := \pi_i(u \cdot v)$, $\forall u, v \in V_i$.
- The Norton algebra (V_i, \star) is commutative but not associative.
- The Norton algebras have interesting automorphism groups and are related to the construction of the monster simple group.
- We determine the Norton algebras of certain distance regular graphs.
- We investigate the automorphism group of the Norton algebra.
- We also measure the nonassociativity of the Norton product \star .

Nonassociativity of binary operation

- Let * be a binary operation on a set X. Let x₀, x₁,..., x_n be X-valued indeterminates.
- If * is associative then the expression x₀ * x₁ * · · · * x_n is unambiguous. Example: x₀ + x₁ + · · · + x_n.
- If * is nonassociative then $x_0 * x_1 * \cdots * x_n$ depends on parentheses. The number of ways to parenthesize $x_0 * x_1 * \cdots * x_n$ is the *Catalan* number $C_n := \frac{1}{n+1} {\binom{2n}{n}}$, e.g., $(C_n)_{n=0}^6 = (1, 1, 2, 5, 14, 42, 132)$.

$$\begin{cases} (x_0 - x_1) - x_2) - x_3 = x_0 - x_1 - x_2 - x_3 \\ (x_0 - x_1) - (x_2 - x_3) = x_0 - x_1 - x_2 + x_3 \\ (x_0 - (x_1 - x_2)) - x_3 = x_0 - x_1 + x_2 - x_3 \\ x_0 - ((x_1 - x_2) - x_3) = x_0 - x_1 + x_2 + x_3 \\ x_0 - (x_1 - (x_2 - x_3)) = x_0 - x_1 + x_2 - x_3 \end{cases} \Rightarrow \begin{cases} C_3 = 5 \\ C_{-,3} = 4 \\ \widetilde{C}_{-,3} = 2 \end{cases}$$

Nonassocitivity measurements

- Parenthesizations of $x_0 * x_1 * \cdots * x_n$ are *-equivalent if they give the same function from X^{n+1} to X. Let $C_{*,n}$ and $\widetilde{C}_{*,n}$ be the number of *-equivalence classes and the largest size of an *-equivalence class.
- In general, $1 \leq C_{*,n} \leq C_n$ and $1 \leq \widetilde{C}_{*,n} \leq C_n$. Moreover, we have $C_{*,n} = 1$, $\forall n \geq 0 \Leftrightarrow *$ is associative $\Leftrightarrow \widetilde{C}_{*,n} = C_n$, $\forall n \geq 0$. Thus $C_{*,n}$ and $\widetilde{C}_{*,n}$ measure how far * is from being associative.
- Csákány and Waldhauser called *C*_{*,n} the *associative spectrum* of * while Braitt and Silberger called it the *subassociativity type*.
- Independently, we studied C_{*,n} and C̃_{*,n} for a family of binary operations generalizing + and (defined by using roots of unity and nilpotent elements in C[x, y]) in joint work with Hein.
- Say * is totally nonassociative if $C_{*,n} = C_n$ (or $\widetilde{C}_{*,n} = 1$), $\forall n \ge 0$.

Double Minus

Definition

- Define *double minus operation* $a \ominus b := -a b$ for all $a, b \in \mathbb{R}$.
- Let $C_{\ominus,n,r}$ be the number of distinct results from $x_0 \ominus x_1 \ominus \cdots \ominus x_n$ with exactly r plus signs, so $C_{\ominus,n} := \sum_{0 \le r \le n+1} C_{\ominus,n,r}$.

Theorem (H., Mickey, and Xu 2017)

• If $n \ge 1$ and $0 \le r \le n+1$ then

$$C_{\ominus,n,r} = \begin{cases} \binom{n+1}{r}, & \text{if } n+r \equiv 1 \pmod{3} \text{ and } n \neq 2r-2, \\ \binom{n+1}{r} - 1, & \text{if } n+r \equiv 1 \pmod{3} \text{ and } n = 2r-2, \\ 0, & \text{if } n+r \not\equiv 1 \pmod{3}. \end{cases}$$

• For
$$n \ge 1$$
 we have $C_{\ominus,n} = \begin{cases} rac{2^{n+1}-1}{3}, & \text{if } n \text{ is odd;} \\ rac{2^{n+1}-2}{3}, & \text{if } n \text{ is even.} \end{cases}$

A truncated/modified Pascal Triangle

Example ($\mathcal{C}_{\ominus,n,r}$ for $n\leq 10$ and $0\leq r\leq n+1)$													
	r	0	1	2	3	4	5	6	7	8	9	10	11
	<i>C</i> _{⊖,0,<i>r</i>}		1										
	$C_{\ominus,1,r}$	1											
	$C_{\ominus,2,r}$			2									
	<i>C</i> ⊖,3, <i>r</i>		4			1							
	$\frac{C_{\ominus,4,r}}{C_{\ominus,5,r}}$	1			9								
	$C_{\ominus,5,r}$			15			6						
	<i>C</i> ⊖,6, <i>r</i>		7			34			1				
	<i>C</i> ⊖,7, <i>r</i>	1			56			28					
	<i>C</i> ⊖,8, <i>r</i>			36			125			9			
	$C_{\ominus,9,r}$		10			210			120			1	
	C _{⊖,10,r}	1			165			461			55		

OEIS A000975

Definition

The sequence A000975 $(A_n : n \ge 1) = (1, 2, 5, 10, 21, 42, 85, ...)$ in OEIS has many equivalent characterizations, such as the following.

- $A_1 = 1$, $A_{n+1} = 2A_n$ if *n* is odd, and $A_{n+1} = 2A_n + 1$ if *n* is even.
- A_n is the integer with an alternating binary representation of length n. (1 = 1₂, 2 = 10₂, 5 = 101₂, 10 = 1010₂, 21 = 10101₂, ...)

•
$$A_n = \left\lfloor \frac{2^{n+1}}{3} \right\rfloor = \frac{2^{n+2}-3-(-1)^n}{6} = \begin{cases} \frac{2^{n+1}-1}{3}, & \text{if } n \text{ is odd;} \\ \frac{2^{n+1}-2}{3}, & \text{if } n \text{ is even.} \end{cases}$$

• *A_n* is the number of moves to solve the *n*-ring Chinese Rings puzzle. *n* = 4: 0000-0001-0011-0010-0111-0101-0100-1100-1101-1111

Question

- Bijections between different objects enumerated by A_n?
- Any formula for $\widetilde{C}_{\ominus,n}$? $(1, 1, 1, 2, 3, 5, 9, 16, 28, 54, 99, \ldots)$

Norton algebra of Hamming graph

Theorem (H. 2021)

- Each eigenspace V_i of H(n, e) has a basis {τ_u : u ∈ X_i}, where X_i is the set of vertices with exactly i nonzero entries.
- If $u, v \in X_i$ then with u + v defined component-wise modulo e,

$$\tau_u \star \tau_v = \begin{cases} \tau_{u+v} & \text{if } u+v \in X_i \\ 0 & \text{otherwise.} \end{cases}$$

- For e ≥ 3, the automorphism group of (V_i, *) is trivial if i = 0, is isomorphic to S_e ≥ S_n if i = 1 or S₃ ≥ S_{2ⁿ⁻¹} if i = n and e = 3, and admits a subgroup isomorphic to (Z_e ⋊ Z_e[×]) ≥ S_n if i ≥ 1.
- The product ★ on V_i is associative if i = 0, equally as nonassociative as the double minus operation ⊖ if e = 3 and i ∈ {1, n}, or totally nonassociative if e = 3 and 1 < i < n or if e ≥ 4 and 1 ≤ i ≤ n.

Examples: H(2,3) and H(3,2)

Example (H(2,3))

*	τ_{01}	$ au_{02}$	$ au_{10}$	$ au_{20}$		*	$ au_{11}$	$ au_{12}$	$ au_{21}$	$ au_{22}$		
τ_{01}	τ_{02}	0	0	0				0				
$ au_{02}$	0	τ_{01}	0	0				$ au_{21}$				
$ au_{10}$	0	0	$ au_{20}$	0		τ_{21}	0	0	$ au_{12}$	0		
$ au_{20}$	0	0	0	$ au_{10}$		$ au_{22}$	0	0	0	τ_{11}		
$V_1(H(2,3))$							$V_2(H(2,3))$					

Example $\overline{(H(3,2))}$

The Norton algebra $V_2(H(3,2))$ has a basis $\{\tau_R, \tau_S, \tau_T\}$, where $R = \{1,2\}$, $S = \{1,3\}$, $T = \{2,3\}$. We have

$$\tau_R \star \tau_R = \tau_S \star \tau_S = \tau_T \star \tau_T = 0,$$

 $\tau_R \star \tau_S = \tau_T, \quad \tau_S \star \tau_T = \tau_R, \quad \text{and} \quad \tau_T \star \tau_R = \tau_S.$

Norton algebra of the hypercube

Theorem (H. 2021)

- Each eigenspace V_i of Q_n has a basis $\{\chi_S : S \subseteq [n], |S| = i\}$.
- If $S, T \subseteq [n]$ with |S| = |T| = i then

$$\chi_{S} \star \chi_{T} = \begin{cases} \chi_{S \triangle T} & \text{if } |S \triangle T| = i \\ 0 & \text{otherwise} \end{cases}$$

where $S \triangle T := (S - T) \cup (T - S)$.

- The automorphism group of (V_i, ⋆) is trivial if i = 0, equals the general linear group of V_i if i > ⌊2n/3⌋ or i is odd, and admits S^B_n/{±1} as a subgroup if 1 ≤ i < n is even (S^B_n ≃ Z₂ ≥ S_n).
- The product ★ on V_i is associative if i = 0, i > [2n/3] or i is odd, but totally nonassociative otherwise.

Linear characters and Cayley graphs

- A *linear character* of a group G is a homomorphism χ : G → C[×] from G to the multiplicative group of nonzero complex numbers.
- The linear characters of *G* form an abelian group *G*^{*} under the *entry-wise product* defined by

$$(\chi \cdot \chi')(g) := \chi(g)\chi'(g) \quad \text{for all } \chi, \chi' \in G^* \text{ and } g \in G.$$

- Assume G is abelian. Then G* is isomorphic to G and is an (orthonormal) basis for the space C^G := {φ : G → C} ≅ C^{|G|}.
- Let G be a finite abelian group expressed additively, and let S be a subset of G {0} such that s ∈ S ⇒ -s ∈ S.
- The Cayley graph $\Gamma(G, S)$ of G with respect to S has vertex set X = G and edge set $E = \{xy : y x \in S\}$.

Cayley graphs of finite abelian groups

Theorem (Well-known, see [Exercise 11.8, Lovasz 1979])

For any Cayley graph $\Gamma = \Gamma(X, S)$ of a finite abelian group X, the linear characters of X form an eigenbasis of Γ with each linear character χ corresponding to the eigenvalue $\chi(S) := \sum_{s \in S} \chi(s)$. (This can be extended to the nonabelian case [Babai 1979, Lovász 1975].)

Theorem (H. 2021)

For any Cayley graph $\Gamma(X, S)$ of a finite abelian group X, we can define the Norton product $\chi \star \chi'$ of two linear characters χ and χ' in the same eigenspace by projecting the entry-wise product $\chi \cdot \chi'$ back to this eigenspace, and this product satisfies

$$\chi \star \chi' = \begin{cases} \chi \cdot \chi' & \text{if } (\chi \cdot \chi')(S) = \chi(S) \\ 0, & \text{otherwise.} \end{cases}$$

Other distance regular Cayley graphs

- The *folded cube* □_n can be obtained from Q_n by identifying each pair of vertices at distance n from each other.
- The half-cube $\frac{1}{2}Q_n$ can be obtained from the hypercube Q_n by selecting vertices with an even number of ones and drawing edges between pairs of vertices differing in exactly two positions.
- The folded half-cube $\frac{1}{2}\Box_n$ is obtained from Q_n by folding and halving.
- The bilinear forms graph H_q(d, e) has vertex set X = Mat_{d,e}(𝔽_q) consisting of all d × e matrices over a finite field 𝔽_q and has edge set E consisting of unordered pairs of x, y ∈ X with rank(x − y) = 1.
- Our linear character approach applies to the above distance regular graphs, as they are all Cayley graphs of finite abelian groups.

Johnson graphs

• The Johnson graph J(n, k) = (X, E) has

• vertex set $X = \{k \text{-subsets of } [n] := \{1, \dots, n\}\}$ and

• edge set $E = \{xy : x, y \in X, |x \cap y| = k - 1\}.$

• For any $x, y \in X$, we have d(x, y) = j if and only if $|x \cap y| = k - j$.

- We may assume $n \ge 2k$ since $J(n, k) \cong J(n, n-k)$ by taking set complement $(|x \cap y| = k 1 \Leftrightarrow |x^c \cap y^c| = n k 1)$.
- The number of vertices at distance r from any vertex is $\binom{k}{r}\binom{n-k}{r}$.
- Thus J(n, k) is a distance-regular graph with diameter d = k.
- J(n,1) is the complete graph K_n and J(n,2) is the line graph of K_n .
- The *i*th eigenvalue of J(n, k) is θ_i = (k − i)(n − k − i) − i whose multiplicity is dim(V_i) = (ⁿ_i) − (ⁿ_{i−1}).

Grassmann graphs and dual polar graphs

- The Grassmann graph $J_q(n,k)$ is a q-analogue of J(n,k), with
 - vertex set $X = \{k \text{-dimensional subspaces of } \mathbb{F}_q^n\}$, and
 - edge set $\{xy : x, y \in X, \dim(x \cap y) = k 1\}$.
- Given a vector space V with a quadratic/symplectic/Hermitian form, the dual polar graph Γ has
 - vertex set $X = \{$ maximal isotropic subspaces of $V \}$, and
 - edge set $E = \{xy : x, y \in X, \dim(x \cap y) = d 1\}$, where $d := \dim(x)$, $\forall x \in X$ is well defined and is the diameter of Γ .
- The Grassmann graphs and dual polar graphs are distance regular.
- Levstein, Maldonado, and Penazzi (2009, 2012) determined the Norton algebra (V₁, *) of Johnson, Grassmann, and dual polar graphs.
- We measured the nonassociativity of (V_1, \star) for these graphs (2020).

17 / 21

Lattice associated with distance regular graphs

Theorem (Levstein, Maldonado, and Penazzi, 2009, 2012)

Let $\Gamma = (X, E)$ be J(n, d), $J_q(n, d)$, H(d, 2) or a dual polar graph of diameter d. There is a graded lattice $L = L_0 \sqcup L_1 \sqcup \cdots \sqcup L_{d+1}$ with $L_0 = \{\hat{0}\}, L_d = X, L_{d+1} = \hat{1}$, such that the following holds. (i) There is a filtration $\Lambda_0 \subseteq \Lambda_1 \subseteq \cdots \subseteq \Lambda_d = \mathbb{R}^X$, where Λ_i is the span of the functions $i_v \in \mathbb{R}^X$ defined below for all $v \in L_i$:

$$a_v(x):=egin{cases} 1 & ext{if } v\leq x \ 0 & ext{otherwise}. \end{cases}$$

(ii) We have $V_0 = \Lambda_0 = \mathbb{R}\mathbf{1}$ and $V_i = \Lambda_i \cap \Lambda_{i-1}^{\perp}$ for i = 1, 2, ..., d. (iii) The set $\{\check{v} : v \in L_1\}$ spans V_1 , where $\check{v} := \pi_1(\imath_v) = \imath_v - \frac{a_1}{|X|}\mathbf{1}$ with $a_1 := \#\{x \in X : x \ge v\}$ not depending on the choice of v.

Remark

The above result is still valid for the Hamming graph H(d, e).

Jia Huang (UNK)

Norton Algebras of DRG

Norton algebra (V_1, \star)

Theorem (Maldonado and Penazzi, 2012)

The eigenspace V_1 of the Johnson graph J(n, k) has a spanning set $\{\check{v}_1, \ldots, \check{v}_n\}$ such that if $u, v \in L_1$ then

$$\check{u} \star \check{v} = \begin{cases} \left(1 - \frac{2k}{n}\right)\check{v} & \text{if } u = v \\ \frac{2k - n}{n(n-2)}(\check{u} + \check{v}) & \text{if } u \neq v. \end{cases}$$

Proposition (H. 2020)

- If n > 2k the Norton algebra $V_1(J(n, k))$ is isomorphic to $V_1(H(1, n))$.
- For $k \ge 2$ the Norton algebra $V_1(J_q(n,k))$ is totally nonassociative.
- The Norton algebra (V₁, *) of a dual polar graph Γ is totally nonassociative if Γ ≠ D₂(2) or equally as nonassociative as the double minus operation ⊖ if Γ = D₂(2).

- Terwilliger (2021) obtained nice formulas for the Norton algebra (V₁, *) of all *Q-polynomial* distance regular graphs. What about the Norton algebra (V_i, *) for i > 1?
- For a Cayley graph we can extend scalars to complex numbers and use linear characters, even though the adjacency matrix of any graph is a real symmetric matrix with real eigenvalues and eigenspaces.
- The eigenspaces of J(n, k) can be constructed by linear algebra (Burcroff 2017) or representation theory (Krebs and Shaheen 2008)
- The Norton algebras we have studied so far are either associative, totally nonassociative, or equally as nonassociative as the double minus operation ⊖. Is there any intuitive explanation for this?

Thank you!