Parity of Leaf Depths in Binary Trees

Jianbai Xu

University of Nebraska Kearney Joint work with J. Huang and M. Mickey

ASSOCIATIVITY OF BINARY OPERATIONS

- Binary operation: $+ \times \div$
- Associative: (A+B)+C=A+(B+C)
- Non-associative: $(A-B)-C \neq A-(B-C)$
- Question#1:How many possible ways to insert parentheses in

 $X_{o} - X_{1} - X_{2} - \dots - X_{n-1} - X_{n}$?

- The answer is Catalan Number: $C_n = \frac{1}{n+1} \binom{2n}{n} = 1, 1, 2, 5, 14, 42, 132, \dots$
- Question#2:How many distinct results?
- The answer is $C_{1,n} = 2^{n-1} : x_0 x_1 \pm x_3 \pm x_4 \pm \cdots \pm x_n$

ASSOCIATIVITY OF BINARY OPERATIONS

• Example:

•
$$((x_o - x_1) - x_2) - x_3 = x_o - x_1 - x_2 - x_3$$

• $(x_o - (x_1 - x_2)) - x_3 = x_o - x_1 + x_2 - x_3$
• $x_o - ((x_1 - x_2) - x_3) = x_o - x_1 + x_2 + x_3$
• $x_o - (x_1 - (x_2 - x_3)) = x_o - x_1 + x_2 - x_3$
• $(x_o - x_1) - (x_2 - x_3) = x_o - x_1 - x_2 + x_3$

• Question#1: $C_3 = 5$

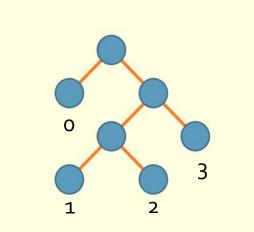
• Question#2: C_{-,3}=4

DOUBLE MINUS OPERATIONS

- Definition: $A \ominus B = -A B$
- EXAMPLES :
 - $(A \ominus B) \ominus C = -(-A-B)-C = A+B-C$
 - $A \oplus (B \oplus C) = -A (-B C) = -A + B + C$
- <u>NOT Associative</u>
- Question#2?

BINARY TREES

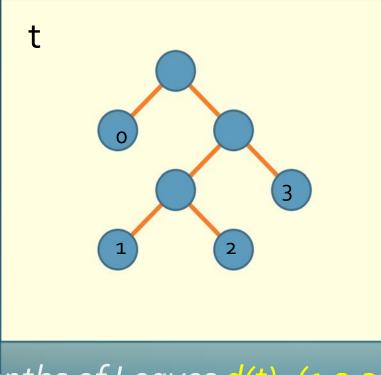
• **DEFINITION:** A full binary tree is defined as a tree in which every node other than the leaves has two children.



 Leaf depth d(t): the numbers of steps needed from the top node down to the leaves

BINARY TREES

$A \oplus ((B \oplus C) \oplus D) = -A - (-(-B - C) - D) = -A - B - C + D$



Depths of Leaves d(t) = (1, 3, 3, 2)

PARENTHESIZATIONS

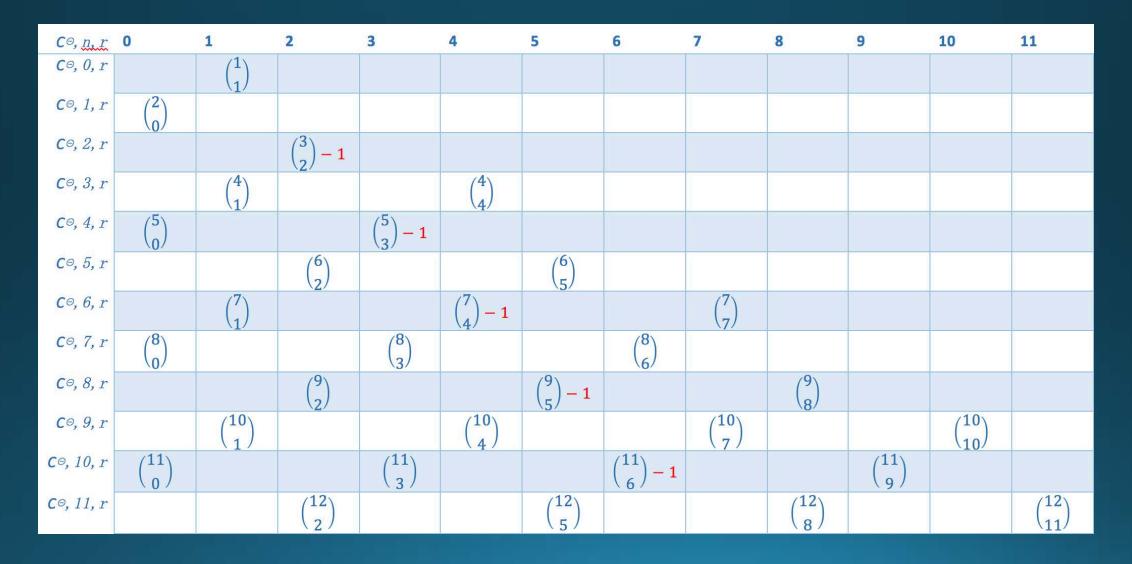
• Define: $C_{\Theta,n,r}$ is the number of distinct results from $X_0 \ominus X_1 \ominus X_2 \ominus X_3$ $\ominus \dots \ominus X_{n-1} \ominus X_n$ with exactly r plus signs.

• For n=3, we have $X_o \oplus X_1 \oplus X_2 \oplus X_3$

•
$$C_{\theta,3,0} = 0$$

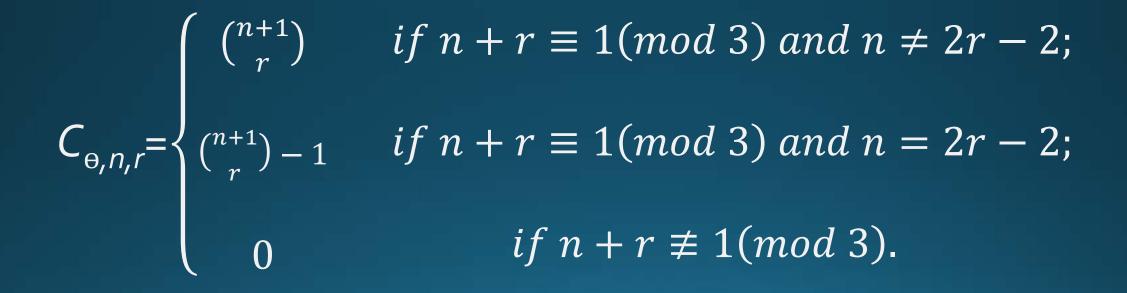
• $C_{\theta,3,1} = 4 = \binom{4}{1}$ (+---, -+--, --+-, ---+)
• $C_{\theta,3,2} = 0$
• $C_{\theta,3,3} = 0$
• $C_{\theta,3,4} = 1 = \binom{4}{4}$ (++++)

PARENTHESIZATIONS



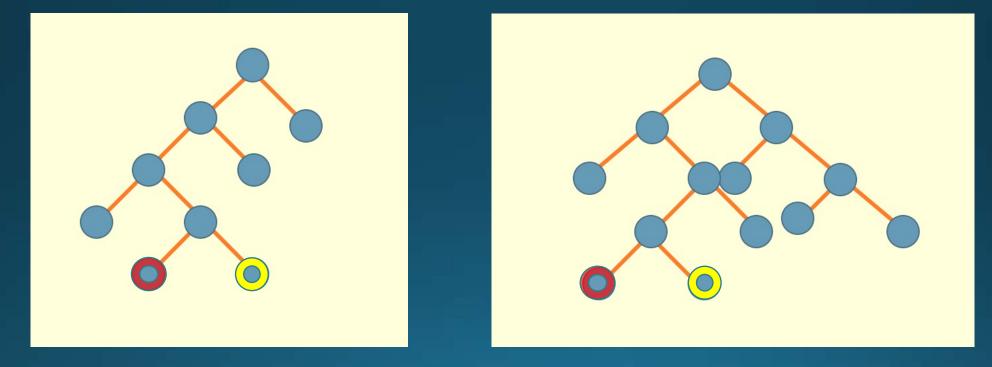
THEOREM (Huang, Mickey and X.)

• For $n \ge 1$ and $o \le r \le n+1$:



WHY "-1"

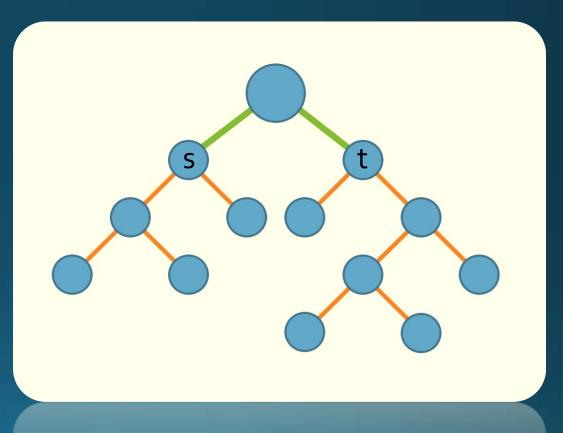
 In every binary tree there exists a leaf with the same depth as the next leaf.



• So, +-+-+-... or -+-+-+... are impossible.

PROOF: INDUCTION ON TREE SIZE

- d(s) = (2, 2, 1)
- d(t) = (1, 3, 3, 2)
- d(s ∧ t) = (2+1, 2+1, 1+1, 1+1, 3+1, 3+1, 2+1)
- =(3, 3, 2, 2, 4, 4, 3)



Thank you!