Polynomial invariants of finite groups of sparse matrices

Jia Huang

Department of Mathematics and Statistics University of Nebraska at Kearney *E-mail address*: huangj2@unk.edu

June 15, 2018

Symmetric polynomials

- Let \mathbb{F} be a field (e.g. \mathbb{R} , \mathbb{C} , \mathbb{Q} , \mathbb{F}_q , etc).
- $\mathbb{F}[X] := \mathbb{F}[x_1, \dots, x_n]$ consists of all polynomials in *n* variables x_1, \dots, x_n with coefficients in \mathbb{F} .
- The *symmetric polynomials* are those invariant under all permutations of the *n* variables.

- The polynomial $x_1^2 + x_2^2 + x_3^2$ is symmetric.
- The polynomial $2x_1x_2 x_2x_3$ is *not* symmetric, because

for
$$w = 231$$
: $w(2x_1x_2 - x_2x_3) = 2x_2x_3 - x_3x_1$.

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial in n variables can be written in a unique way as a polynomial in the elementary symmetric polynomials e_1, \ldots, e_n .

$$f(t) = (t + x_1)(t + x_2)(t + x_3) \quad (\bigcup_{e_1} \text{ Vieta's formula})$$

= $t^3 + (\underbrace{x_1 + x_2 + x_3}_{e_1})t^2 + (\underbrace{x_1x_2 + x_1x_3 + x_2x_3}_{e_2})t + \underbrace{x_1x_2x_3}_{e_3}.$
 $x_1^2 + x_2^2 + x_3^2 = e_1^2 - 2e_2.$

Matrix action on polynomials

•
$$\begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 2 \\ 2 & -1 & 0 \end{pmatrix}$$
 : $x_1 \mapsto x_1 - x_2 + 2x_3$.
• $\begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 2 \\ 2 & -1 & 0 \end{pmatrix}$: $x_2 \mapsto x_2 - x_3$.
• $\begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 2 \\ 2 & -1 & 0 \end{pmatrix}$: $x_3 \mapsto x_1 + 2x_2$.
• Permutation matrices: e.g. 231 $\leftrightarrow \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- Let G be a finite group of some n by n matrices over \mathbb{F} .
- The invariant ring $\mathbb{F}[X]^G$ consists of all the polynomials in $\mathbb{F}[X]$ invariant under the matrix group G.
- The symmetric group $S_n = \{n \times n \text{ permutation matrices}\}$.

Fundamental Theorem of Symmetric Polynomials (restated)

 $\mathbb{F}[X]^{S_n} = \mathbb{F}[e_1, \ldots, e_n]$ is a polynomial algebra in e_1, \ldots, e_n .

Polynomial Algebra Problem

Find all finite matrix groups G such that $\mathbb{F}[X]^G$ is polynomial.

•
$$1/|G| \in \mathbb{F}$$
: solved (nice case)

• $1/|G| \notin \mathbb{F}$: still open! (tricky case)

Suppose $1/|G| \in \mathbb{F}$. Then $\mathbb{F}[X]^G$ is polynomial if and only if G is generated by pseudo-reflections (elements fixing a hyperplane).

Jia Huang

Polynomial invariants of finite groups of sparse matrices

- The symmetric group S_n = {all permutations} has order n! and its invariant ring F[X]^{S_n} is polynomial over any field F.
- Next, consider the general linear group $GL(n, \mathbb{F}) = \{ \text{all } n \times n \text{ invertible matrices over } \mathbb{F} \}.$
- Let $\mathbb{F} = \mathbb{F}_q$ be the finite field of q elements.

•
$$|GL(n,\mathbb{F}_q)| = (q^n-1)(q^n-q)(q^n-q^2)\cdots(q^n-q^{n-1}).$$

•
$$|GL(n, \mathbb{F}_q)| = 0$$
 in \mathbb{F}_q .

• What are the polynomial invariants of $GL(n, \mathbb{F}_q)$?

Theorem (L. E. Dickson 🦉 1911)

Let $G = GL(n, \mathbb{F}_q)$. Then $\mathbb{F}_q[X]^G = \mathbb{F}_q[c_1, \ldots, c_n]$ is a polynomial algebra in Dickson's invariants c_1, \ldots, c_n .

Example (n = 2, q = 2)

$$f(t) = (t + 0x_1 + 0x_2)(t + x_1 + 0x_2)(t + 0x_1 + x_2)(t + x_1 + x_2)$$

= $t^4 + (\underbrace{x_1^2 + x_2^2 + x_1x_2}_{c_1})t^2 + (\underbrace{x_1^2x_2 + x_1x_2^2}_{c_2})t.$

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial in n variables can be written in a unique way as a polynomial in the elementary symmetric polynomials e_1, \ldots, e_n .

$$f(t) = (t + x_1)(t + x_2)(t + x_3) \quad (\bigcup_{e_1} \text{ Vieta's formula})$$

= $t^3 + (\underbrace{x_1 + x_2 + x_3}_{e_1})t^2 + (\underbrace{x_1x_2 + x_1x_3 + x_2x_3}_{e_2})t + \underbrace{x_1x_2x_3}_{e_3}.$
 $x_1^2 + x_2^2 + x_3^2 = e_1^2 - 2e_2.$

Subgroups of $GL(n, \mathbb{F}_q)$ whose invariant ring is polynomial

- A sparsity pattern σ assigns a set σ(i,j) ⊆ 𝔽 to each pair (i,j) with 1 ≤ i, j ≤ n.
- $GL_{\sigma}(n,\mathbb{F}) = \{[a_{ij}] \in GL(n,\mathbb{F}) : a_{ij} \in \sigma(i,j)\}.$
- This includes all previous examples, and gives new examples:

$$\begin{pmatrix} \mathbb{F}_{3^3} & \mathbb{F}_{3^6} \\ 0 & \mathbb{F}_{3^2} \end{pmatrix} \subset \textit{GL}(2,\mathbb{F}_{3^6}).$$

Example

If
$$G = \begin{pmatrix} \mathbb{F}_{3^3} & \mathbb{F}_{3^6} \\ 0 & \mathbb{F}_{3^2} \end{pmatrix}$$
 then $\mathbb{F}_{3^6}[x_1, x_2]^G$ is a polynomial algebra in
 $x_1^{3^3-1}$ and $(x_2^{3^6} - x_1^{3^6-1}x_2)^{3^2-1}$.

Theorem 1 (H.)

If $G = GL_{\sigma}(n, \mathbb{F})$ is a finite group, then $\mathbb{F}[X]^{G}$ is polynomial.

Proof.

Use matrix operations and some commutative algebra.

If a matrix group G can be written as

$$G = \begin{pmatrix} G_X & \Phi \\ 0 & G_Y \end{pmatrix} \subset GL(m+n,\mathbb{F})$$

where

- G_X is a subgroup of $GL(m, \mathbb{F})$,
- G_{γ} is a subgroup of $GL(n, \mathbb{F})$,
- Φ is a subspace of $\mathbb{F}^{m \times n}$,
- with some extra technical conditions,

then we say that G is a *polynomial gluing* of G_{χ} and G_{γ} .

Theorem 2 (H.)

Let G be a polynomial gluing of G_X and G_Y . If both $\mathbb{F}[X]^{G_X}$ and $\mathbb{F}[Y]^{G_Y}$ are polynomial, and so is $\mathbb{F}[X, Y]^G$.

Example (\Rightarrow Theorem 1)

A finite group $GL_{\sigma}(n, \mathbb{F})$ of sparse matrices is essentially a polynomial gluing of various finite general linear groups $GL(m, \mathbb{F}_q)$.

Example

Nakajima (1983) found all *p*-groups *G* in $GL(n, \mathbb{F}_p)$ with a polynomial invariant ring $\mathbb{F}_p[X]^G$, which turn out to be polynomial gluings of copies of the trivial group $\{1_{\mathbb{F}}\}$.

Example

The symmetric group S_n has a polynomial invariant ring $\mathbb{F}[X]^{S_n} = \mathbb{F}[e_1, \ldots, e_n]$, but cannot be obtained from polynomial gluing if $n \ge 3$ and $1/n \notin \mathbb{F}$.

Proposition

Suppose that $\mathbb{F}[X]^G$ is a polynomial algebra in f_1, \ldots, f_n . Then

- one can choose f_1, \ldots, f_n to be homogeneous,
- their degrees d_1, \ldots, d_n are uniquely determined,
- $|G| = d_1 \cdots d_n$ (e.g. $n! = 1 \cdot 2 \cdots n$), and
- The Hilbert series of the invariant ring $\mathbb{F}[X]^G$ is

$$\sum_{d\geq 0} \dim_{\mathbb{F}}(\mathbb{F}[X]^G)_d \cdot t^d = \frac{1}{(1-t^{d_1})\cdots(1-t^{d_n})}$$

Signed permutations

- $S_n^{\pm} = \{\text{signed permutations}\}; |S_n^{\pm}| = n! \cdot 2^n.$
- Example: $S_2^{\pm} = \{12, 21, \overline{1}2, \overline{2}1, 1\overline{2}, 2\overline{1}, \overline{1}\overline{2}, \overline{2}\overline{1}\}.$
- S_n^{\pm} is the symmetry group of a hypercube.

• The invariant ring of S_n^{\pm} is a polynomial algebra in $\{e_i(x_1^2, \ldots, x_n^2) : 1 \le i \le n\}.$

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial in n variables can be written in a unique way as a polynomial in the elementary symmetric polynomials e_1, \ldots, e_n .

$$f(t) = (t + x_1)(t + x_2)(t + x_3) \quad (\bigcup_{e_1} \text{ Vieta's formula})$$

= $t^3 + (\underbrace{x_1 + x_2 + x_3}_{e_1})t^2 + (\underbrace{x_1x_2 + x_1x_3 + x_2x_3}_{e_2})t + \underbrace{x_1x_2x_3}_{e_3}.$
 $x_1^2 + x_2^2 + x_3^2 = e_1^2 - 2e_2.$

Theorem (L. E. Dickson 🦉 1911)

Let $G = GL(n, \mathbb{F}_q)$. Then $\mathbb{F}_q[X]^G = \mathbb{F}_q[c_1, \ldots, c_n]$ is a polynomial algebra in Dickson's invariants c_1, \ldots, c_n .

Example (n = 2, q = 2)

$$f(t) = (t + 0x_1 + 0x_2)(t + x_1 + 0x_2)(t + 0x_1 + x_2)(t + x_1 + x_2)$$

= $t^4 + (\underbrace{x_1^2 + x_2^2 + x_1x_2}_{c_1})t^2 + (\underbrace{x_1^2x_2 + x_1x_2^2}_{c_2})t.$

- $S_n \to GL(n, \mathbb{F}_q); \ S_n^{\pm} \to O(n, \mathbb{F}_q), \ Sp(n, \mathbb{F}_q).$
- The invariants of finite orthogonal/symplectic groups form a *complete intersection* (weaker than a polynomial algebra).
- I can define sparsity subgroups of $O(n, \mathbb{F}_q)$ and $Sp(n, \mathbb{F}_q)$.
- What about their invariants?

Thank you!