Polynomial invariants of finite groups of sparse matrices

Jia Huang
Department of Mathematics and Statistics
University of Nebraska at Kearney
E-mail address: huangj2@unk.edu

June 15, 2018

Symmetry

Symmetric polynomials

- Let \mathbb{F} be a field (e.g. $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{F}_{q}$, etc).
- $\mathbb{F}[X]:=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ consists of all polynomials in n variables x_{1}, \ldots, x_{n} with coefficients in \mathbb{F}.
- The symmetric polynomials are those invariant under all permutations of the n variables.

Example ($n=3$)

- The polynomial $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ is symmetric.
- The polynomial $2 x_{1} x_{2}-x_{2} x_{3}$ is not symmetric, because

$$
\text { for } w=231: w\left(2 x_{1} x_{2}-x_{2} x_{3}\right)=2 x_{2} x_{3}-x_{3} x_{1} .
$$

Fundamental Theorem of Symmetric Polynomials

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial in n variables can be written in a unique way as a polynomial in the elementary symmetric polynomials e_{1}, \ldots, e_{n}.

Example $(n=3)$

$$
\begin{gathered}
f(t)=\left(t+x_{1}\right)\left(t+x_{2}\right)\left(t+x_{3}\right) \quad(t^{3}+(\underbrace{x_{1}+x_{2}+x_{3}}_{e_{1}}) t^{2}+(\underbrace{x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}}_{e_{2}}) t+\underbrace{x_{1} x_{2} x_{3}}_{e_{3}} . \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=e_{1}^{2}-2 e_{2} .
\end{gathered}
$$

Matrix action on polynomials

- $\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 2 \\ 2 & -1 & 0\end{array}\right): x_{1} \mapsto x_{1}-x_{2}+2 x_{3}$.
- $\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 2 \\ 2 & -1 & 0\end{array}\right): x_{2} \mapsto x_{2}-x_{3}$.
- $\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 2 \\ 2 & -1 & 0\end{array}\right): x_{3} \mapsto x_{1}+2 x_{2}$.
- Permutation matrices: e.g. $231 \leftrightarrow\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.

Invariants under a matrix group

- Let G be a finite group of some n by n matrices over \mathbb{F}.
- The invariant ring $\mathbb{F}[X]^{G}$ consists of all the polynomials in $\mathbb{F}[X]$ invariant under the matrix group G.
- The symmetric group $S_{n}=\{n \times n$ permutation matrices $\}$.

Fundamental Theorem of Symmetric Polynomials (restated)

$\mathbb{F}[X]^{S_{n}}=\mathbb{F}\left[e_{1}, \ldots, e_{n}\right]$ is a polynomial algebra in e_{1}, \ldots, e_{n}.

Polynomial Algebra Problem

Find all finite matrix groups G such that $\mathbb{F}[X]^{G}$ is polynomial.

- $1 /|G| \in \mathbb{F}$: solved (nice case)
- $1 /|G| \notin \mathbb{F}$: still open! (tricky case)

Nice case: reflection groups

Theorem (Chevalley Shephard ${ }^{2}$, and Todd 1955)

Suppose $1 /|G| \in \mathbb{F}$. Then $\mathbb{F}[X]^{G}$ is polynomial if and only if G is generated by pseudo-reflections (elements fixing a hyperplane).

Example (Symmetry groups of regular polytopes)

Tricky case?

- The symmetric group $S_{n}=\{$ all permutations $\}$ has order n ! and its invariant ring $\mathbb{F}[X]^{S_{n}}$ is polynomial over any field \mathbb{F}.
- Next, consider the general linear group $G L(n, \mathbb{F})=\{$ all $n \times n$ invertible matrices over $\mathbb{F}\}$.
- Let $\mathbb{F}=\mathbb{F}_{q}$ be the finite field of q elements.
- $\left|G L\left(n, \mathbb{F}_{q}\right)\right|=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{n-1}\right)$.
- $\left|G L\left(n, \mathbb{F}_{q}\right)\right|=0$ in \mathbb{F}_{q}.
- What are the polynomial invariants of $G L\left(n, \mathbb{F}_{q}\right)$?

Invariants of $G L\left(n, \mathbb{F}_{q}\right)$

Theorem (L. E. Dickson 1911)

Let $G=G L\left(n, \mathbb{F}_{q}\right)$. Then $\mathbb{F}_{q}[X]^{G}=\mathbb{F}_{q}\left[c_{1}, \ldots, c_{n}\right]$ is a polynomial algebra in Dickson's invariants c_{1}, \ldots, c_{n}.

Example $(n=2, q=2)$

$$
\begin{aligned}
f(t) & =\left(t+0 x_{1}+0 x_{2}\right)\left(t+x_{1}+0 x_{2}\right)\left(t+0 x_{1}+x_{2}\right)\left(t+x_{1}+x_{2}\right) \\
& =t^{4}+(\underbrace{x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}}_{c_{1}}) t^{2}+(\underbrace{x_{1}^{2} x_{2}+x_{1} x_{2}^{2}}_{c_{2}}) t .
\end{aligned}
$$

Fundamental Theorem of Symmetric Polynomials

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial in n variables can be written in a unique way as a polynomial in the elementary symmetric polynomials e_{1}, \ldots, e_{n}.

Example $(n=3)$

$$
\begin{gathered}
f(t)=\left(t+x_{1}\right)\left(t+x_{2}\right)\left(t+x_{3}\right) \quad(t^{3}+(\underbrace{x_{1}+x_{2}+x_{3}}_{e_{1}}) t^{2}+(\underbrace{x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}}_{e_{2}}) t+\underbrace{x_{1} x_{2} x_{3}}_{e_{3}} . \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=e_{1}^{2}-2 e_{2} .
\end{gathered}
$$

Subgroups of $G L\left(n, \mathbb{F}_{q}\right)$ whose invariant ring is polynomial

A common generalization

- A sparsity pattern σ assigns a set $\sigma(i, j) \subseteq \mathbb{F}$ to each pair (i, j) with $1 \leq i, j \leq n$.
- $G L_{\sigma}(n, \mathbb{F})=\left\{\left[a_{i j}\right] \in G L(n, \mathbb{F}): a_{i j} \in \sigma(i, j)\right\}$.
- This includes all previous examples, and gives new examples:

$$
\left(\begin{array}{cc}
\mathbb{F}_{3^{3}} & \mathbb{F}_{3^{6}} \\
0 & \mathbb{F}_{3^{2}}
\end{array}\right) \subset G L\left(2, \mathbb{F}_{3^{6}}\right)
$$

Invariants of sparse matrices

Example

If $G=\left(\begin{array}{cc}\mathbb{F}_{3^{3}} & \mathbb{F}_{3^{6}} \\ 0 & \mathbb{F}_{3^{2}}\end{array}\right)$ then $\mathbb{F}_{3^{6}}\left[x_{1}, x_{2}\right]^{G}$ is a polynomial algebra in

$$
x_{1}^{3^{3}-1} \quad \text { and } \quad\left(x_{2}^{3^{6}}-x_{1}^{3^{6}-1} x_{2}\right)^{3^{2}-1}
$$

```
Theorem 1 (H.)
If }G=G\mp@subsup{L}{\sigma}{}(n,\mathbb{F})\mathrm{ is a finite group, then }\mathbb{F}[X\mp@subsup{]}{}{G}\mathrm{ is polynomial.
```


Proof.

Use matrix operations and some commutative algebra.

Polynomial gluing construction

If a matrix group G can be written as

$$
G=\left(\begin{array}{cc}
G_{X} & \Phi \\
0 & G_{Y}
\end{array}\right) \subset G L(m+n, \mathbb{F})
$$

where

- G_{X} is a subgroup of $G L(m, \mathbb{F})$,
- G_{Y} is a subgroup of $G L(n, \mathbb{F})$,
- Φ is a subspace of $\mathbb{F}^{m \times n}$,
- with some extra technical conditions, then we say that G is a polynomial gluing of G_{X} and G_{Y}.

Invariants after gluing

Theorem 2 (H.)

Let G be a polynomial gluing of G_{X} and G_{Y}. If both $\mathbb{F}[X]^{G_{X}}$ and $\mathbb{F}[Y]^{G_{Y}}$ are polynomial, and so is $\mathbb{F}[X, Y]^{G}$.

Example (\Rightarrow Theorem 1)

A finite group $G L_{\sigma}(n, \mathbb{F})$ of sparse matrices is essentially a polynomial gluing of various finite general linear groups $G L\left(m, \mathbb{F}_{q}\right)$.

More examples of polynomial gluing

Example

Nakajima (1983) found all p-groups G in $G L\left(n, \mathbb{F}_{p}\right)$ with a polynomial invariant ring $\mathbb{F}_{p}[X]^{G}$, which turn out to be polynomial gluings of copies of the trivial group $\left\{1_{\mathbb{F}}\right\}$.

Example

The symmetric group S_{n} has a polynomial invariant ring $\mathbb{F}[X]^{S_{n}}=\mathbb{F}\left[e_{1}, \ldots, e_{n}\right]$, but cannot be obtained from polynomial gluing if $n \geq 3$ and $1 / n \notin \mathbb{F}$.

Some combinatorics

Proposition

Suppose that $\mathbb{F}[X]^{G}$ is a polynomial algebra in f_{1}, \ldots, f_{n}. Then

- one can choose f_{1}, \ldots, f_{n} to be homogeneous,
- their degrees d_{1}, \ldots, d_{n} are uniquely determined,
- $|G|=d_{1} \cdots d_{n}$ (e.g. $n!=1 \cdot 2 \cdots n$), and
- The Hilbert series of the invariant ring $\mathbb{F}[X]^{G}$ is

$$
\sum_{d \geq 0} \operatorname{dim}_{\mathbb{F}}\left(\mathbb{F}[X]^{G}\right)_{d} \cdot t^{d}=\frac{1}{\left(1-t^{d_{1}}\right) \cdots\left(1-t^{d_{n}}\right)}
$$

Signed permutations

- $S_{n}^{ \pm}=\{$signed permutations $\} ;\left|S_{n}^{ \pm}\right|=n!\cdot 2^{n}$.
- Example: $S_{2}^{ \pm}=\{12,21, \overline{1} 2, \overline{2} 1,1 \overline{2}, 2 \overline{1}, \overline{1} \overline{2}, \overline{2} \overline{1}\}$.
- $S_{n}^{ \pm}$is the symmetry group of a hypercube.

- The invariant ring of $S_{n}^{ \pm}$is a polynomial algebra in $\left\{e_{i}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right): 1 \leq i \leq n\right\}$.

Fundamental Theorem of Symmetric Polynomials

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial in n variables can be written in a unique way as a polynomial in the elementary symmetric polynomials e_{1}, \ldots, e_{n}.

Example $(n=3)$

$$
\begin{gathered}
f(t)=\left(t+x_{1}\right)\left(t+x_{2}\right)\left(t+x_{3}\right) \quad(t^{3}+(\underbrace{x_{1}+x_{2}+x_{3}}_{e_{1}}) t^{2}+(\underbrace{x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}}_{e_{2}}) t+\underbrace{x_{1} x_{2} x_{3}}_{e_{3}} . \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=e_{1}^{2}-2 e_{2} .
\end{gathered}
$$

Invariants of $G L\left(n, \mathbb{F}_{q}\right)$

Theorem (L. E. Dickson 1911)

Let $G=G L\left(n, \mathbb{F}_{q}\right)$. Then $\mathbb{F}_{q}[X]^{G}=\mathbb{F}_{q}\left[c_{1}, \ldots, c_{n}\right]$ is a polynomial algebra in Dickson's invariants c_{1}, \ldots, c_{n}.

Example $(n=2, q=2)$

$$
\begin{aligned}
f(t) & =\left(t+0 x_{1}+0 x_{2}\right)\left(t+x_{1}+0 x_{2}\right)\left(t+0 x_{1}+x_{2}\right)\left(t+x_{1}+x_{2}\right) \\
& =t^{4}+(\underbrace{x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}}_{c_{1}}) t^{2}+(\underbrace{x_{1}^{2} x_{2}+x_{1} x_{2}^{2}}_{c_{2}}) t .
\end{aligned}
$$

Generalization?

- $S_{n} \rightarrow G L\left(n, \mathbb{F}_{q}\right) ; S_{n}^{ \pm} \rightarrow O\left(n, \mathbb{F}_{q}\right), S p\left(n, \mathbb{F}_{q}\right)$.
- The invariants of finite orthogonal/symplectic groups form a complete intersection (weaker than a polynomial algebra).
- I can define sparsity subgroups of $O\left(n, \mathbb{F}_{q}\right)$ and $\operatorname{Sp}\left(n, \mathbb{F}_{q}\right)$.
- What about their invariants?

Thank you!

