Critical groups for Hopf algebra modules

Jia Huang

University of Nebraska at Kearney *E-mail address*: huangj2@unk.edu

This is joint work with Darij Grinberg (UMN) and Victor Reiner (UMN).

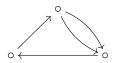
April 28, 2018

• Let D be a loopless digraph (i.e., directed graph) with vertex set V.

э

• Let D be a loopless digraph (i.e., directed graph) with vertex set V.

• Example:



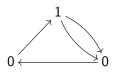
Jia Huang (UNK)

Critical groups for Hopf algebra modules

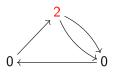
April 28, 2018 2 / 28

- Let D be a loopless digraph (i.e., directed graph) with vertex set V.
- A configuration a : V → {0, 1, 2, ...} assigns a finite number of chips to each vertex. It is stable if a(v) < d⁺(v) for all v ∈ V.

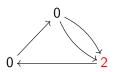
• Example:



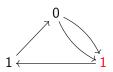
- Let D be a loopless digraph (i.e., directed graph) with vertex set V.
- A configuration a : V → {0, 1, 2, ...} assigns a finite number of chips to each vertex. It is stable if a(v) < d⁺(v) for all v ∈ V.
- If a(v) ≥ d⁺(v) for some v ∈ V, we can *fire* v and get a new configuration by moving one chip from v to each of its out-neighbors.
- Example:



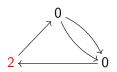
- Let D be a loopless digraph (i.e., directed graph) with vertex set V.
- A configuration a : V → {0, 1, 2, ...} assigns a finite number of chips to each vertex. It is stable if a(v) < d⁺(v) for all v ∈ V.
- If a(v) ≥ d⁺(v) for some v ∈ V, we can *fire* v and get a new configuration by moving one chip from v to each of its out-neighbors.
- Example:



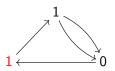
- Let D be a loopless digraph (i.e., directed graph) with vertex set V.
- A configuration a : V → {0, 1, 2, ...} assigns a finite number of chips to each vertex. It is stable if a(v) < d⁺(v) for all v ∈ V.
- If a(v) ≥ d⁺(v) for some v ∈ V, we can *fire* v and get a new configuration by moving one chip from v to each of its out-neighbors.
- Example:



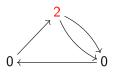
- Let D be a loopless digraph (i.e., directed graph) with vertex set V.
- A configuration a : V → {0, 1, 2, ...} assigns a finite number of chips to each vertex. It is stable if a(v) < d⁺(v) for all v ∈ V.
- If a(v) ≥ d⁺(v) for some v ∈ V, we can *fire* v and get a new configuration by moving one chip from v to each of its out-neighbors.
- Example:



- Let D be a loopless digraph (i.e., directed graph) with vertex set V.
- A configuration a : V → {0, 1, 2, ...} assigns a finite number of chips to each vertex. It is stable if a(v) < d⁺(v) for all v ∈ V.
- If a(v) ≥ d⁺(v) for some v ∈ V, we can *fire* v and get a new configuration by moving one chip from v to each of its out-neighbors.
- Example:



- Let D be a loopless digraph (i.e., directed graph) with vertex set V.
- A configuration a : V → {0, 1, 2, ...} assigns a finite number of chips to each vertex. It is stable if a(v) < d⁺(v) for all v ∈ V.
- If a(v) ≥ d⁺(v) for some v ∈ V, we can *fire* v and get a new configuration by moving one chip from v to each of its out-neighbors.
- Example:



• Chip-firing on digraphs may or may not terminate, depending on the starting configuration but not on the choices of vertices to fire.

- Chip-firing on digraphs may or may not terminate, depending on the starting configuration but not on the choices of vertices to fire.
- If chip-firing terminates, the stable configuration obtained in the end depends only on the starting configuration.

- Chip-firing on digraphs may or may not terminate, depending on the starting configuration but not on the choices of vertices to fire.
- If chip-firing terminates, the stable configuration obtained in the end depends only on the starting configuration.
- The example below will terminate:

- Chip-firing on digraphs may or may not terminate, depending on the starting configuration but not on the choices of vertices to fire.
- If chip-firing terminates, the stable configuration obtained in the end depends only on the starting configuration.
- The example below will terminate:

- Chip-firing on digraphs may or may not terminate, depending on the starting configuration but not on the choices of vertices to fire.
- If chip-firing terminates, the stable configuration obtained in the end depends only on the starting configuration.
- The example below will terminate:

Chip-firing with a sink

• Add a *sink*: a vertex reachable from all other vertices by direct paths.

- Add a *sink*: a vertex reachable from all other vertices by direct paths.
- Then every configuration can be brought to a unique stable configuration by a finite sequence of chip-firings (Dhar).

- Add a *sink*: a vertex reachable from all other vertices by direct paths.
- Then every configuration can be brought to a unique stable configuration by a finite sequence of chip-firings (Dhar).
- Given two stable configurations a and b, define a ⊕ b to be the unique stable configuration obtained from a + b by chip-firing.

- Add a *sink*: a vertex reachable from all other vertices by direct paths.
- Then every configuration can be brought to a unique stable configuration by a finite sequence of chip-firings (Dhar).
- Given two stable configurations a and b, define a ⊕ b to be the unique stable configuration obtained from a + b by chip-firing.
- The sandpile monoid M is the set of all stable configurations with \oplus .

- Add a *sink*: a vertex reachable from all other vertices by direct paths.
- Then every configuration can be brought to a unique stable configuration by a finite sequence of chip-firings (Dhar).
- Given two stable configurations a and b, define a ⊕ b to be the unique stable configuration obtained from a + b by chip-firing.
- The sandpile monoid M is the set of all stable configurations with \oplus .
- A stable configuration *a* is *recurrent* if $\forall b \in M, \exists x \in M, b \oplus x = a$.

- Add a *sink*: a vertex reachable from all other vertices by direct paths.
- Then every configuration can be brought to a unique stable configuration by a finite sequence of chip-firings (Dhar).
- Given two stable configurations a and b, define a ⊕ b to be the unique stable configuration obtained from a + b by chip-firing.
- The sandpile monoid M is the set of all stable configurations with \oplus .
- A stable configuration *a* is *recurrent* if $\forall b \in M, \exists x \in M, b \oplus x = a$.
- The *sandpile group* or *critical group* is the minimal ideal of *M* and it consists of recurrent configurations (Babai and Toumpakari).

- Add a *sink*: a vertex reachable from all other vertices by direct paths.
- Then every configuration can be brought to a unique stable configuration by a finite sequence of chip-firings (Dhar).
- Given two stable configurations a and b, define a ⊕ b to be the unique stable configuration obtained from a + b by chip-firing.
- The sandpile monoid M is the set of all stable configurations with \oplus .
- A stable configuration *a* is *recurrent* if $\forall b \in M, \exists x \in M, b \oplus x = a$.
- The *sandpile group* or *critical group* is the minimal ideal of *M* and it consists of recurrent configurations (Babai and Toumpakari).
- The order of the sandpile group is the number of directed spanning trees in which the sink is reachable from every vertex by a path.

< □ > < □ > < □ > < □ > < □ > < □ >

• The Laplacian *L* of a digraph with vertices 1, 2, ..., *n* is an *n*-by-*n* matrix whose (*i*, *j*)-entry is

$$L_{ij} = \begin{cases} -(\text{number of edges from } i \text{ to } j), & 1 \le i \ne j \le n, \\ d^+(i), & 1 \le i = j \le n. \end{cases}$$

- 4 E

Image: A match a ma

• The Laplacian *L* of a digraph with vertices 1, 2, ..., *n* is an *n*-by-*n* matrix whose (*i*, *j*)-entry is

$$L_{ij} = \begin{cases} -(\text{number of edges from } i \text{ to } j), & 1 \leq i \neq j \leq n, \\ d^+(i), & 1 \leq i = j \leq n. \end{cases}$$

• A configuration *a* is a row vector with *n* nonnegative integer entries.

• The Laplacian *L* of a digraph with vertices 1, 2, ..., *n* is an *n*-by-*n* matrix whose (*i*, *j*)-entry is

$$L_{ij} = \begin{cases} -(\text{number of edges from } i \text{ to } j), & 1 \leq i \neq j \leq n, \\ d^+(i), & 1 \leq i = j \leq n. \end{cases}$$

A configuration a is a row vector with n nonnegative integer entries.
Firing a vertex i gives another configuration a' = a - (L_{i1},..., L_{in}).

• The Laplacian *L* of a digraph with vertices 1, 2, ..., *n* is an *n*-by-*n* matrix whose (*i*, *j*)-entry is

$$L_{ij} = \begin{cases} -(\text{number of edges from } i \text{ to } j), & 1 \le i \ne j \le n, \\ d^+(i), & 1 \le i = j \le n. \end{cases}$$

- A configuration *a* is a row vector with *n* nonnegative integer entries.
- Firing a vertex *i* gives another configuration $a' = a (L_{i1}, \ldots, L_{in})$.
- If vertex *n* is a sink, consider the *reduced Laplacian* \overline{L} obtained from *L* by striking out the last row and last column.

• The Laplacian *L* of a digraph with vertices 1, 2, ..., *n* is an *n*-by-*n* matrix whose (*i*, *j*)-entry is

$$L_{ij} = \begin{cases} -(\text{number of edges from } i \text{ to } j), & 1 \le i \ne j \le n, \\ d^+(i), & 1 \le i = j \le n. \end{cases}$$

- A configuration *a* is a row vector with *n* nonnegative integer entries.
- Firing a vertex *i* gives another configuration $a' = a (L_{i1}, \ldots, L_{in})$.
- If vertex *n* is a sink, consider the *reduced Laplacian* \overline{L} obtained from *L* by striking out the last row and last column.
- A configuration is a row vector with n-1 nonnegative integer entries.

• The Laplacian *L* of a digraph with vertices 1, 2, ..., *n* is an *n*-by-*n* matrix whose (*i*, *j*)-entry is

$$L_{ij} = \begin{cases} -(\text{number of edges from } i \text{ to } j), & 1 \le i \ne j \le n, \\ d^+(i), & 1 \le i = j \le n. \end{cases}$$

- A configuration *a* is a row vector with *n* nonnegative integer entries.
- Firing a vertex *i* gives another configuration $a' = a (L_{i1}, \ldots, L_{in})$.
- If vertex *n* is a sink, consider the *reduced Laplacian* \overline{L} obtained from *L* by striking out the last row and last column.
- A configuration is a row vector with n-1 nonnegative integer entries.
- Firing $i \neq n$ corresponds to subtracting the *i*th row of \overline{L} .

• A matrix $C \in \mathbb{Z}^{\ell \times \ell}$ with nonpositive off-diagonal entries is a *Z*-matrix.

- A matrix $C \in \mathbb{Z}^{\ell \times \ell}$ with nonpositive off-diagonal entries is a *Z*-matrix.
- A configuration is a vector $a = (a_1, \ldots, a_\ell)$ with $a_i \in \{0, 1, 2, \ldots\}$.

- A matrix $C \in \mathbb{Z}^{\ell \times \ell}$ with nonpositive off-diagonal entries is a *Z*-matrix.
- A configuration is a vector $a = (a_1, \ldots, a_\ell)$ with $a_i \in \{0, 1, 2, \ldots\}$.
- If $a_i \ge C_{ii}$ then firing *i* gives a new configuration $a' = a (C_{ij})_{j=1}^{\ell}$.

- A matrix $C \in \mathbb{Z}^{\ell \times \ell}$ with nonpositive off-diagonal entries is a *Z*-matrix.
- A configuration is a vector $a = (a_1, \ldots, a_\ell)$ with $a_i \in \{0, 1, 2, \ldots\}$.
- If $a_i \ge C_{ii}$ then firing *i* gives a new configuration $a' = a (C_{ij})_{j=1}^{\ell}$.
- A configuration *a* is *stable* if $a_i < C_{ii}$ for all $i = 1, 2, ..., \ell$.

- A matrix $C \in \mathbb{Z}^{\ell \times \ell}$ with nonpositive off-diagonal entries is a *Z*-matrix.
- A configuration is a vector $a = (a_1, \ldots, a_\ell)$ with $a_i \in \{0, 1, 2, \ldots\}$.
- If $a_i \ge C_{ii}$ then firing *i* gives a new configuration $a' = a (C_{ij})_{i=1}^{\ell}$.
- A configuration *a* is *stable* if $a_i < C_{ii}$ for all $i = 1, 2, ..., \ell$.
- A Z-matrix is *avalanche-finite* if every configuration can be brought to a stable one by a finite sequence of chip-firings.

- A matrix $C \in \mathbb{Z}^{\ell \times \ell}$ with nonpositive off-diagonal entries is a *Z*-matrix.
- A configuration is a vector $a = (a_1, \ldots, a_\ell)$ with $a_i \in \{0, 1, 2, \ldots\}$.
- If $a_i \ge C_{ii}$ then firing *i* gives a new configuration $a' = a (C_{ij})_{j=1}^{\ell}$.
- A configuration *a* is *stable* if $a_i < C_{ii}$ for all $i = 1, 2, ..., \ell$.
- A Z-matrix is *avalanche-finite* if every configuration can be brought to a stable one by a finite sequence of chip-firings.
- How to test whether a Z-matrix is avalanche-finite?

Avalanche-finite matrices

Definition

A Z-matrix C is a *nonsingular* M-matrix if $C^{-1} \ge 0$ (entrywise).

< □ > < 同 > < 回 > < 回 > < 回 >

Avalanche-finite matrices

Definition

A Z-matrix C is a *nonsingular M-matrix* if $C^{-1} \ge 0$ (entrywise).

Theorem (Gabrielov, Plemmons, Benkart–Klivans–Reiner)

Given a Z-matrix $C \in \mathbb{Z}^{\ell \times \ell}$, the following statements are equivalent.

- C is avalanche-finite.
- 2 C^t is avalanche-finite.
- C is a nonsingular M-matrix.
- There exists a column vector $x \in \mathbb{R}^{\ell}$ with x > 0 and Cx > 0.
- Severy eigenvalue of C has a positive real part.

There are dozens of other statements equivalent to the above ones.

< □ > < □ > < □ > < □ > < □ > < □ >

The critical group K(C) of an avalanche-finite matrix C ∈ Z^{ℓ×ℓ} is the cokernel of C^t : Z^ℓ → Z^ℓ, that is, K(C) := Z^ℓ/im(C^t).

- The critical group K(C) of an avalanche-finite matrix C ∈ Z^{ℓ×ℓ} is the cokernel of C^t : Z^ℓ → Z^ℓ, that is, K(C) := Z^ℓ/im(C^t).
- For each configuration a, there exists a unique stable configuration stab_C(a) obtained from a by a finite sequence of chip-firings.

- The critical group K(C) of an avalanche-finite matrix C ∈ Z^{ℓ×ℓ} is the cokernel of C^t : Z^ℓ → Z^ℓ, that is, K(C) := Z^ℓ/im(C^t).
- For each configuration a, there exists a unique stable configuration stab_C(a) obtained from a by a finite sequence of chip-firings.
- A configuration a is (C-)recurrent if there exists some b ∈ Z^ℓ with b > 0 such that a = stab_C(a + b).

- The critical group K(C) of an avalanche-finite matrix C ∈ Z^{ℓ×ℓ} is the cokernel of C^t : Z^ℓ → Z^ℓ, that is, K(C) := Z^ℓ/im(C^t).
- For each configuration a, there exists a unique stable configuration stab_C(a) obtained from a by a finite sequence of chip-firings.
- A configuration a is (C-)recurrent if there exists some b ∈ Z^ℓ with b > 0 such that a = stab_C(a + b).
- Theorem (Dhar, Postnikov–Shapiro): The recurrent configurations form a system of coset representatives for K(C) = Z^ℓ/im(C^t).

- ロ ト - (周 ト - (日 ト - (日 ト -)日

- The critical group K(C) of an avalanche-finite matrix C ∈ Z^{ℓ×ℓ} is the cokernel of C^t : Z^ℓ → Z^ℓ, that is, K(C) := Z^ℓ/im(C^t).
- For each configuration a, there exists a unique stable configuration stab_C(a) obtained from a by a finite sequence of chip-firings.
- A configuration a is (C-)recurrent if there exists some b ∈ Z^ℓ with b > 0 such that a = stab_C(a + b).
- Theorem (Dhar, Postnikov–Shapiro): The recurrent configurations form a system of coset representatives for K(C) = Z^ℓ/im(C^t).
- How can we find interesting avalanche-finite matrices?

The McKay matrix of a (complex) group representation

• Let G be a finite group with irreducible representations S_0, \ldots, S_ℓ and corresponding characters $\chi_0, \ldots, \chi_\ell$, where S_0 is trivial.

The McKay matrix of a (complex) group representation

- Let G be a finite group with irreducible representations S_0, \ldots, S_ℓ and corresponding characters $\chi_0, \ldots, \chi_\ell$, where S_0 is trivial.
- For a fixed representation V of G with character χ_V we have

$$S_j\otimes V=igoplus_{1\leq j\leq \ell+1}S_j^{\oplus m_{ij}},$$

$$\chi_i \chi_V = \sum_{1 \le j \le \ell+1} m_{ij} \chi_j$$

The McKay matrix of a (complex) group representation

- Let G be a finite group with irreducible representations S_0, \ldots, S_ℓ and corresponding characters $\chi_0, \ldots, \chi_\ell$, where S_0 is trivial.
- For a fixed representation V of G with character χ_V we have

$$S_i\otimes V=igoplus_{1\leq j\leq \ell+1}S_j^{\oplus m_{ij}},$$

$$\chi_i \chi_V = \sum_{1 \le j \le \ell+1} m_{ij} \chi_j.$$

• Let $M_V := (m_{ij})_{i,j=0}^{\ell}$ and $L_V := \dim(V) \cdot I_{\ell+1} - M_V$.

The symmetric group \mathfrak{S}_n

• $G = \mathfrak{S}_4$ has irreducibles D^{λ} indexed by partitions $\lambda \vdash 4$.

э

4 E b

Image: A match a ma

The symmetric group \mathfrak{S}_n

- $G = \mathfrak{S}_4$ has irreducibles D^{λ} indexed by partitions $\lambda \vdash 4$.
- We have the character table

$$\begin{array}{ccccc} e & (ij) & (ij)(kl) & (ijk) & (ijkl) \\ D^4 \\ D^{31} \\ D^{22} \\ D^{211} \\ D^{1111} \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & 0 & -1 & -1 \\ 2 & 0 & -1 & 2 & 0 \\ 3 & -1 & 0 & -1 & 1 \\ 1 & -1 & 1 & 1 & -1 \end{pmatrix}.$$

3

イロト イポト イヨト イヨト

The symmetric group \mathfrak{S}_n

- $G = \mathfrak{S}_4$ has irreducibles D^{λ} indexed by partitions $\lambda \vdash 4$.
- We have the character table

$$\begin{array}{ccccc} e & (ij) & (ij)(kl) & (ijk) & (ijkl) \\ D^4 \\ D^{31} \\ D^{22} \\ D^{211} \\ D^{1111} \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & 0 & -1 & -1 \\ 2 & 0 & -1 & 2 & 0 \\ 3 & -1 & 0 & -1 & 1 \\ 1 & -1 & 1 & 1 & -1 \end{pmatrix}.$$

• Fix $V = D^{31}$. Then

$$M_V = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad L_V = \begin{pmatrix} 3 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & -1 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & -1 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 3 \end{pmatrix}.$$

4 E b

• Striking out the row and column of L_V indexed by the trivial representation gives \overline{L}_V .

- Striking out the row and column of L_V indexed by the trivial representation gives \overline{L}_V .
- Define the *critical group* of V to be $K(V) := \operatorname{coker}(\overline{L}_V)$.

- Striking out the row and column of L_V indexed by the trivial representation gives \overline{L}_V .
- Define the *critical group* of V to be $K(V) := \operatorname{coker}(\overline{L}_V)$.
- The cokernel of L_V is isomorphic to $\mathbb{Z} \oplus K(V)$.

- Striking out the row and column of L_V indexed by the trivial representation gives \overline{L}_V .
- Define the *critical group* of V to be $K(V) := \operatorname{coker}(\overline{L}_V)$.
- The cokernel of L_V is isomorphic to $\mathbb{Z} \oplus K(V)$.

$$ullet$$
 For $V=D^{31}$ we have ${\mathcal K}(V)={\mathbb Z}/4{\mathbb Z}$ since

$$\overline{L}_{V} = \begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & 0 \\ -1 & -1 & 2 & -1 \\ 0 & 0 & -1 & 3 \end{pmatrix} \text{ has Smith normal form } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

• Let $g_0 = e, g_1, \ldots, g_\ell$ be representatives of the conjugacy classes of G.

< □ > < □ > < □ > < □ > < □ > < □ >

- Let $g_0 = e, g_1, \ldots, g_\ell$ be representatives of the conjugacy classes of G.
- The matrix L_V has orthogonal eigenvectors (χ₀(g_j),..., χ_ℓ(g_j))^t with corresponding eigenvalues dim(V) χ_V(g_j) for j = 0, 1, ..., ℓ.

- Let $g_0 = e, g_1, \dots, g_\ell$ be representatives of the conjugacy classes of G.
- The matrix L_V has orthogonal eigenvectors (χ₀(g_j),..., χ_ℓ(g_j))^t with corresponding eigenvalues dim(V) χ_V(g_j) for j = 0, 1, ..., ℓ.
- In particular, the vector $\mathbf{s} := (\dim(S_0), \dots, \dim(S_\ell))^t$ lies in ker (L_V) .

- Let $g_0 = e, g_1, \dots, g_\ell$ be representatives of the conjugacy classes of G.
- The matrix L_V has orthogonal eigenvectors (χ₀(g_j),..., χ_ℓ(g_j))^t with corresponding eigenvalues dim(V) χ_V(g_j) for j = 0, 1, ..., ℓ.
- In particular, the vector $\mathbf{s} := (\dim(S_0), \dots, \dim(S_\ell))^t$ lies in ker (L_V) .
- L_V has rank at most n-1, with equality if and only if V is faithful.

- Let $g_0 = e, g_1, \dots, g_\ell$ be representatives of the conjugacy classes of G.
- The matrix L_V has orthogonal eigenvectors (χ₀(g_j),..., χ_ℓ(g_j))^t with corresponding eigenvalues dim(V) χ_V(g_j) for j = 0, 1, ..., ℓ.
- In particular, the vector $\mathbf{s} := (\dim(S_0), \dots, \dim(S_\ell))^t$ lies in ker (L_V) .
- L_V has rank at most n-1, with equality if and only if V is faithful.
- Assume V is faithful below. Then **s** spans $ker(L_V)$ and $ker((L_V)^t)$.

- Let $g_0 = e, g_1, \dots, g_\ell$ be representatives of the conjugacy classes of G.
- The matrix L_V has orthogonal eigenvectors (χ₀(g_j),..., χ_ℓ(g_j))^t with corresponding eigenvalues dim(V) χ_V(g_j) for j = 0, 1, ..., ℓ.
- In particular, the vector $\mathbf{s} := (\dim(S_0), \dots, \dim(S_\ell))^t$ lies in ker (L_V) .
- L_V has rank at most n-1, with equality if and only if V is faithful.
- Assume V is faithful below. Then **s** spans $ker(L_V)$ and $ker((L_V)^t)$.
- \overline{L}_V is a nonsingular *M*-matrix with some nice chip-firing properties.

- Let $g_0 = e, g_1, \dots, g_\ell$ be representatives of the conjugacy classes of G.
- The matrix L_V has orthogonal eigenvectors (χ₀(g_j),..., χ_ℓ(g_j))^t with corresponding eigenvalues dim(V) χ_V(g_j) for j = 0, 1, ..., ℓ.
- In particular, the vector $\mathbf{s} := (\dim(S_0), \dots, \dim(S_\ell))^t$ lies in ker (L_V) .
- L_V has rank at most n-1, with equality if and only if V is faithful.
- Assume V is faithful below. Then **s** spans $ker(L_V)$ and $ker((L_V)^t)$.
- \overline{L}_V is a nonsingular *M*-matrix with some nice chip-firing properties.
- Chip-firing for some V agrees with chip-firing on certain digraphs.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト - - ヨ -

• If V is a faithful then $|K(V)| = \frac{1}{|G|} \prod_{1 \le j \le \ell} (\dim(V) - \chi_V(g_j)).$

イロト イヨト イヨト イヨト

- If V is a faithful then $|K(V)| = \frac{1}{|G|} \prod_{1 \le j \le \ell} (\dim(V) \chi_V(g_j)).$
- If V is the regular representation then $K(V) \cong (\mathbb{Z}/|G|\mathbb{Z})^{\ell-1}$.

- If V is a faithful then $|K(V)| = \frac{1}{|G|} \prod_{1 \le j \le \ell} (\dim(V) \chi_V(g_j)).$
- If V is the regular representation then $K(V) \cong (\mathbb{Z}/|G|\mathbb{Z})^{\ell-1}$.
- If V is the reflection representation of \mathfrak{S}_n (on \mathbb{C}^n) then

$$\mathcal{K}(V) \cong igoplus_{2 \leq i \leq p(n) - p(n-1)} \mathbb{Z}/q_i \mathbb{Z}$$

where $p(m) := |\{\text{partitions of } m\}|$ and $q_i := \prod_{\substack{1 \le j \le n \\ p(j) - p(j-1) \ge i}} j$.

April 28, 2018

13 / 28

- If V is a faithful then $|K(V)| = \frac{1}{|G|} \prod_{1 \le j \le \ell} (\dim(V) \chi_V(g_j)).$
- If V is the regular representation then $K(V) \cong (\mathbb{Z}/|G|\mathbb{Z})^{\ell-1}$.
- If V is the reflection representation of \mathfrak{S}_n (on \mathbb{C}^n) then

$$K(V) \cong \bigoplus_{2 \leq i \leq p(n)-p(n-1)} \mathbb{Z}/q_i\mathbb{Z}$$

where $p(m) := |\{\text{partitions of } m\}| \text{ and } q_i := \prod_{\substack{1 \le j \le n \\ p(j) - p(j-1) \ge i}} j.$

• How about other reflection groups?

• Let \mathbb{F} be an algebraically closed field. Let A be a finite dimensional \mathbb{F} -algebra, which is not necessarily semisimple.

- Let \mathbb{F} be an algebraically closed field. Let A be a finite dimensional \mathbb{F} -algebra, which is not necessarily semisimple.
- Let S₀, S₁,..., S_ℓ be the simple (left) A-modules. Let P₀, P₁,..., P_ℓ be the projective indecomposable A-modules with P_i/rad(P_i) = S_i.

- Let \mathbb{F} be an algebraically closed field. Let A be a finite dimensional \mathbb{F} -algebra, which is not necessarily semisimple.
- Let S₀, S₁,..., S_ℓ be the simple (left) A-modules. Let P₀, P₁,..., P_ℓ be the projective indecomposable A-modules with P_i/rad(P_i) = S_i.
- The regular presentation decomposes as $A = \bigoplus_{0 \le i \le \ell} P_i^{\dim(S_i)}$.

- Let \mathbb{F} be an algebraically closed field. Let A be a finite dimensional \mathbb{F} -algebra, which is not necessarily semisimple.
- Let S₀, S₁,..., S_ℓ be the simple (left) A-modules. Let P₀, P₁,..., P_ℓ be the projective indecomposable A-modules with P_i/rad(P_i) = S_i.
- The regular presentation decomposes as $A = \bigoplus_{0 \le i \le \ell} P_i^{\dim(S_i)}$.
- The Grothendieck group G₀(A) has a free basis {S_i}^ℓ_{i=0}. Two A-modules with the same composition series are equal in G₀(A).

- Let \mathbb{F} be an algebraically closed field. Let A be a finite dimensional \mathbb{F} -algebra, which is not necessarily semisimple.
- Let S₀, S₁,..., S_ℓ be the simple (left) A-modules. Let P₀, P₁,..., P_ℓ be the projective indecomposable A-modules with P_i/rad(P_i) = S_i.
- The regular presentation decomposes as $A = \bigoplus_{0 \le i \le \ell} P_i^{\dim(S_i)}$.
- The Grothendieck group G₀(A) has a free basis {S_i}^ℓ_{i=0}. Two A-modules with the same composition series are equal in G₀(A).
- The multiplicity of S_i in the composition factors of an A-module V is

$$[V:S_i] = \dim \operatorname{Hom}_A(P_i, V).$$

- ロ ト - (周 ト - (日 ト - (日 ト -)日

- Let \mathbb{F} be an algebraically closed field. Let A be a finite dimensional \mathbb{F} -algebra, which is not necessarily semisimple.
- Let S₀, S₁,..., S_ℓ be the simple (left) A-modules. Let P₀, P₁,..., P_ℓ be the projective indecomposable A-modules with P_i/rad(P_i) = S_i.
- The regular presentation decomposes as $A = \bigoplus_{0 \le i \le \ell} P_i^{\dim(S_i)}$.
- The Grothendieck group G₀(A) has a free basis {S_i}^ℓ_{i=0}. Two A-modules with the same composition series are equal in G₀(A).
- The multiplicity of S_i in the composition factors of an A-module V is

$$[V:S_i] = \dim \operatorname{Hom}_{\mathcal{A}}(P_i, V).$$

• How to define tensor product and trivial representation?

$$g(u \otimes v) = g(u) \otimes g(v), \quad \forall g \in G.$$

★ ∃ ► < ∃ ►</p>

$$g(u \otimes v) = g(u) \otimes g(v), \quad \forall g \in G.$$

• The trivial G-module is one-dimensional with each $g \in G$ acting by 1.

$$g(u \otimes v) = g(u) \otimes g(v), \quad \forall g \in G.$$

The trivial G-module is one-dimensional with each g ∈ G acting by 1.
We are using the coalgebra structure of the group algebra 𝔽G:

$$\Delta(g) := g \otimes g, \quad \epsilon(g) := 1, \quad \forall g \in G.$$

$$g(u \otimes v) = g(u) \otimes g(v), \quad \forall g \in G.$$

The trivial G-module is one-dimensional with each g ∈ G acting by 1.
We are using the coalgebra structure of the group algebra 𝔽G:

$$\Delta(g):=g\otimes g,\quad \epsilon(g):=1,\quad orall g\in G.$$

The group algebra A = 𝔅G becomes a Hopf algebra with the above coalgebra sturcture and an extra antipode α : 𝔅G → 𝔅G, g → g⁻¹.

Suppose A is a finite dimensional Hopf algebra with a coproduct
 Δ : A → A ⊗ A, a counit ε : A → F, and an antipode α : A → A.

4 E b

- Suppose A is a finite dimensional Hopf algebra with a coproduct
 Δ : A → A ⊗ A, a counit ε : A → F, and an antipode α : A → A.
- The tensor product of A-modules V and W becomes an A-module by

$$a(v\otimes w):=\sum a_1(v)\otimes a_2(w) \quad ext{for all } a\in A, v\in V, w\in W.$$

- Suppose A is a finite dimensional Hopf algebra with a coproduct
 Δ : A → A ⊗ A, a counit ε : A → F, and an antipode α : A → A.
- The tensor product of A-modules V and W becomes an A-module by

$$a(v\otimes w):=\sum a_1(v)\otimes a_2(w) \quad ext{for all } a\in A, v\in V, w\in W.$$

• There is a trivial A-module $S_0 = \mathbb{F}$ with $a \in A$ acting by $\epsilon(a) \in \mathbb{F}$.

- Suppose A is a finite dimensional Hopf algebra with a coproduct
 Δ : A → A ⊗ A, a counit ε : A → F, and an antipode α : A → A.
- The tensor product of A-modules V and W becomes an A-module by

$$a(v\otimes w):=\sum a_1(v)\otimes a_2(w) \quad ext{for all } a\in A, v\in V, w\in W.$$

- There is a trivial A-module $S_0 = \mathbb{F}$ with $a \in A$ acting by $\epsilon(a) \in \mathbb{F}$.
- An A-module V has two dual A-modules *V and V^* defined by

$$\mathsf{a}(f)(\mathsf{v}) := egin{cases} f(lpha(\mathsf{a})\mathsf{v}), & f\in\mathsf{Hom}_{\mathbb{F}}(\mathsf{V},\mathbb{F})=\mathsf{V}^*, \ f(lpha^{-1}(\mathsf{a})(\mathsf{v}), & f\in\mathsf{Hom}_{\mathbb{F}}(\mathsf{V},\mathbb{F})=\ ^*\mathsf{V}. \end{cases}$$

Jia Huang (UNK)

April 28, 2018 16 / 28

• The Universal enveloping algebra $\mathfrak{U}(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is

$$\mathbb{F} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \oplus \cdots / (x \otimes y - y \otimes x - [x, y] : x, y \in \mathfrak{g}).$$

イロト イポト イヨト イヨト 二日

 \bullet The Universal enveloping algebra $\mathfrak{U}(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is

$$\mathbb{F} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \oplus \cdots / (x \otimes y - y \otimes x - [x, y] : x, y \in \mathfrak{g}).$$

• $A = \mathfrak{U}(\mathfrak{g})$ is an infinite dimensional Hopf algebra with

$$\epsilon(x)=0, \quad \Delta(x)=1\otimes x+x\otimes 1, \quad lpha(x)=-x, \quad orall x\in \mathfrak{g}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The Universal enveloping algebra $\mathfrak{U}(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is

$$\mathbb{F} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \oplus \cdots / (x \otimes y - y \otimes x - [x, y] : x, y \in \mathfrak{g}).$$

• $A = \mathfrak{U}(\mathfrak{g})$ is an infinite dimensional Hopf algebra with

$$\epsilon(x)=0, \quad \Delta(x)=1\otimes x+x\otimes 1, \quad lpha(x)=-x, \quad orall x\in \mathfrak{g}.$$

• A-modules are representations of g. Tensor product, trivial modules, etc. agree with usual concepts in Lie algebra representation theory.

• The Universal enveloping algebra $\mathfrak{U}(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is

$$\mathbb{F} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \oplus \cdots / (x \otimes y - y \otimes x - [x, y] : x, y \in \mathfrak{g}).$$

• $A = \mathfrak{U}(\mathfrak{g})$ is an infinite dimensional Hopf algebra with

$$\epsilon(x)=0, \quad \Delta(x)=1\otimes x+x\otimes 1, \quad lpha(x)=-x, \quad orall x\in \mathfrak{g}.$$

- A-modules are representations of g. Tensor product, trivial modules, etc. agree with usual concepts in Lie algebra representation theory.
- If char(𝔅) = p > 0 then there is a p-operation x → x^[p] on 𝔅, giving the restricted universal enveloping algebra 𝑢(𝔅) := 𝔅(𝔅)/(x^p x^[p]).

• The Universal enveloping algebra $\mathfrak{U}(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is

$$\mathbb{F} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \oplus \cdots / (x \otimes y - y \otimes x - [x, y] : x, y \in \mathfrak{g}).$$

• $A = \mathfrak{U}(\mathfrak{g})$ is an infinite dimensional Hopf algebra with

$$\epsilon(x)=0, \quad \Delta(x)=1\otimes x+x\otimes 1, \quad lpha(x)=-x, \quad orall x\in \mathfrak{g}.$$

- A-modules are representations of g. Tensor product, trivial modules, etc. agree with usual concepts in Lie algebra representation theory.
- If char(𝔅) = p > 0 then there is a p-operation x → x^[p] on 𝔅, giving the restricted universal enveloping algebra 𝑢(𝔅) := 𝔅(𝔅)/(x^p x^[p]).
- $A = \mathfrak{u}(\mathfrak{g})$ is a Hopf algebra of dimension $p^{\dim(\mathfrak{g})}$.

• Let $0 < m \mid n$. Let ω be a primitive *n*th root of unity in \mathbb{F} .

- Let $0 < m \mid n$. Let ω be a primitive *n*th root of unity in \mathbb{F} .
- The generalized Taft Hopf algebra is defined as

$$H_{n,m} := \langle g, x : g^n = 1, x^m = 0, xg = \omega gx \rangle.$$

- Let $0 < m \mid n$. Let ω be a primitive *n*th root of unity in \mathbb{F} .
- The generalized Taft Hopf algebra is defined as

$$H_{n,m} := \langle g, x : g^n = 1, x^m = 0, xg = \omega gx \rangle.$$

• It has dimension mn and an \mathbb{F} -basis $\{g^i x^j : 0 \le i < n, 0 \le j < m\}$.

- Let $0 < m \mid n$. Let ω be a primitive *n*th root of unity in \mathbb{F} .
- The generalized Taft Hopf algebra is defined as

$$H_{n,m} := \langle g, x : g^n = 1, x^m = 0, xg = \omega gx \rangle.$$

- It has dimension mn and an \mathbb{F} -basis $\{g^i x^j : 0 \le i < n, 0 \le j < m\}$.
- Its Hopf algebra structure is given by

$$\epsilon(g) = 1, \qquad \Delta(g) = g \otimes g, \qquad \alpha(g) = g^{-1}$$

$$\epsilon(x) = 0, \quad \Delta(x) = 1 \otimes x + x \otimes g, \quad \alpha(x) = -\omega^{-1}g^{-1}x.$$

• Fix an A-module V and let $M_V := ([S_i \otimes V : S_j])_{i,j=0}^{\ell}$.

Image: A match a ma

- Fix an A-module V and let $M_V := ([S_i \otimes V : S_j])_{i,i=0}^{\ell}$.
- Let $L_V := \dim(V) \cdot I M_V$. We want $\operatorname{coker}(L_V) = \mathbb{Z} \oplus K(V)$.

- Fix an A-module V and let $M_V := ([S_i \otimes V : S_j])_{i,j=0}^{\ell}$.
- Let $L_V := \dim(V) \cdot I M_V$. We want $\operatorname{coker}(L_V) = \mathbb{Z} \oplus K(V)$.
- Striking out the row and column indexed by $S_0 = \epsilon$ in L_V gives $\overline{L_V}$.

- Fix an A-module V and let $M_V := ([S_i \otimes V : S_j])_{i,j=0}^{\ell}$.
- Let $L_V := \dim(V) \cdot I M_V$. We want $\operatorname{coker}(L_V) = \mathbb{Z} \oplus K(V)$.
- Striking out the row and column indexed by $S_0 = \epsilon$ in L_V gives $\overline{L_V}$.
- Unfortunately, coker(L_V) ≠ Z ⊕ coker(L_V) unless A is semisimple (in this case many of the previous results on chip-firing remain valid).

- Fix an A-module V and let $M_V := ([S_i \otimes V : S_j])_{i,j=0}^{\ell}$.
- Let $L_V := \dim(V) \cdot I M_V$. We want $\operatorname{coker}(L_V) = \mathbb{Z} \oplus K(V)$.
- Striking out the row and column indexed by $S_0 = \epsilon$ in L_V gives $\overline{L_V}$.
- Unfortunately, coker(L_V) ≠ Z ⊕ coker(L_V) unless A is semisimple (in this case many of the previous results on chip-firing remain valid).
- M_V gives right multiplication by V on the Grothendieck group $G_0(A)$.

- Fix an A-module V and let $M_V := ([S_i \otimes V : S_j])_{i,j=0}^{\ell}$.
- Let $L_V := \dim(V) \cdot I M_V$. We want $\operatorname{coker}(L_V) = \mathbb{Z} \oplus K(V)$.
- Striking out the row and column indexed by $S_0 = \epsilon$ in L_V gives $\overline{L_V}$.
- Unfortunately, coker(L_V) ≠ ℤ ⊕ coker(L_V) unless A is semisimple (in this case many of the previous results on chip-firing remain valid).
- M_V gives right multiplication by V on the Grothendieck group $G_0(A)$.
- The augmentation map $G_0(A) \to \mathbb{Z}$ defined by $U \mapsto \dim(U)$ corresponds to $\mathbf{x} \mapsto \mathbf{s} \cdot \mathbf{x}$, where $\mathbf{s} := (\dim(S_0), \dots, \dim(S_\ell))^t$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Fix an A-module V and let $M_V := ([S_i \otimes V : S_j])_{i,j=0}^{\ell}$.
- Let $L_V := \dim(V) \cdot I M_V$. We want $\operatorname{coker}(L_V) = \mathbb{Z} \oplus K(V)$.
- Striking out the row and column indexed by $S_0 = \epsilon$ in L_V gives $\overline{L_V}$.
- Unfortunately, coker(L_V) ≠ Z ⊕ coker(L_V) unless A is semisimple (in this case many of the previous results on chip-firing remain valid).
- M_V gives right multiplication by V on the Grothendieck group $G_0(A)$.
- The augmentation map $G_0(A) \to \mathbb{Z}$ defined by $U \mapsto \dim(U)$ corresponds to $\mathbf{x} \mapsto \mathbf{s} \cdot \mathbf{x}$, where $\mathbf{s} := (\dim(S_0), \dots, \dim(S_\ell))^t$.
- This gives a decomposition $G_0(A) \cong \mathbb{Z}^{\ell+1} = \mathbb{Z} \oplus \mathbf{s}^{\perp}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Fix an A-module V and let $M_V := ([S_i \otimes V : S_j])_{i,j=0}^{\ell}$.
- Let $L_V := \dim(V) \cdot I M_V$. We want $\operatorname{coker}(L_V) = \mathbb{Z} \oplus K(V)$.
- Striking out the row and column indexed by $S_0 = \epsilon$ in L_V gives $\overline{L_V}$.
- Unfortunately, coker(L_V) ≠ ℤ ⊕ coker(L_V) unless A is semisimple (in this case many of the previous results on chip-firing remain valid).
- M_V gives right multiplication by V on the Grothendieck group $G_0(A)$.
- The augmentation map G₀(A) → Z defined by U → dim(U) corresponds to x → s ⋅ x, where s := (dim(S₀),...,dim(S_ℓ))^t.
- This gives a decomposition $G_0(A) \cong \mathbb{Z}^{\ell+1} = \mathbb{Z} \oplus \mathbf{s}^{\perp}$.
- Define the *critical group* of V to be $K(V) := \mathbf{s}^{\perp} / \operatorname{im}(L_V)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When is K(V) finite?

Theorem (Grinberg, H. and Reiner)

The following are equivalent.

- $\overline{L_V}$ is a nonsingular M-matrix.
- $\overline{L_V}$ is nonsingular.
- L_V has rank ℓ , so nullity one.
- K(V) is finite.
- V is tensor-rich, meaning that there exists a positive integer t such that [⊕^t_{k=0} V^{⊗k} : S_i] > 0 for all i.

When is K(V) finite?

Theorem (Grinberg, H. and Reiner)

The following are equivalent.

- $\overline{L_V}$ is a nonsingular M-matrix.
- $\overline{L_V}$ is nonsingular.
- L_V has rank ℓ , so nullity one.
- K(V) is finite.
- V is tensor-rich, meaning that there exists a positive integer t such that [⊕^t_{k=0} V^{⊗k} : S_i] > 0 for all i.

Question

- How to test tensor-richness using some kind of character theory of A?
- Can we describe $\operatorname{rank}(L_V)$ using simple A-modules in $V^{\otimes k}$ for $k \geq 1$?

< □ > < □ > < □ > < □ > < □ > < □ >

Let $d := \dim(A)$, $\mathbf{p} := (\dim(P_0), \ldots, \dim(P_\ell))$, and $\gamma := \gcd(\mathbf{p})$.

Let $d := \dim(A)$, $\mathbf{p} := (\dim(P_0), \dots, \dim(P_\ell))$, and $\gamma := \gcd(\mathbf{p})$.

Theorem (Grinberg, H., and Reiner)

We have s ∈ ker((L_V)^t) and p ∈ ker(L_V). (To prove the latter we need both *V and V*, which exist for finite tensor categories.)

Let $d := \dim(A)$, $\mathbf{p} := (\dim(P_0), \dots, \dim(P_\ell))$, and $\gamma := \gcd(\mathbf{p})$.

Theorem (Grinberg, H., and Reiner)

- We have s ∈ ker((L_V)^t) and p ∈ ker(L_V). (To prove the latter we need both *V and V*, which exist for finite tensor categories.)
- For the regular representation V = A we have $M_A = \mathbf{ps}^t$.

Let $d := \dim(A)$, $\mathbf{p} := (\dim(P_0), \dots, \dim(P_\ell))$, and $\gamma := \gcd(\mathbf{p})$.

Theorem (Grinberg, H., and Reiner)

- We have s ∈ ker((L_V)^t) and p ∈ ker(L_V). (To prove the latter we need both *V and V*, which exist for finite tensor categories.)
- For the regular representation V = A we have $M_A = \mathbf{ps}^t$.
- If $\ell = 0$ then K(A) = 0, else $K(A) \cong (\mathbb{Z}/\gamma\mathbb{Z}) \oplus (\mathbb{Z}/d\mathbb{Z})^{\ell-1}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $d := \dim(A)$, $\mathbf{p} := (\dim(P_0), \dots, \dim(P_\ell))$, and $\gamma := \gcd(\mathbf{p})$.

Theorem (Grinberg, H., and Reiner)

- We have s ∈ ker((L_V)^t) and p ∈ ker(L_V). (To prove the latter we need both *V and V*, which exist for finite tensor categories.)
- For the regular representation V = A we have $M_A = \mathbf{ps}^t$.
- If $\ell = 0$ then K(A) = 0, else $K(A) \cong (\mathbb{Z}/\gamma\mathbb{Z}) \oplus (\mathbb{Z}/d\mathbb{Z})^{\ell-1}$.
- Assume K(V) is finite so that L_V has nonzero eigenvalues $\lambda_1, \ldots, \lambda_\ell$. Then $|K(V)| = |\lambda_1 \cdots \lambda_\ell \cdot \gamma/d|$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $d := \dim(A)$, $\mathbf{p} := (\dim(P_0), \dots, \dim(P_\ell))$, and $\gamma := \gcd(\mathbf{p})$.

Theorem (Grinberg, H., and Reiner)

- We have s ∈ ker((L_V)^t) and p ∈ ker(L_V). (To prove the latter we need both *V and V*, which exist for finite tensor categories.)
- For the regular representation V = A we have $M_A = \mathbf{ps}^t$.
- If $\ell = 0$ then K(A) = 0, else $K(A) \cong (\mathbb{Z}/\gamma\mathbb{Z}) \oplus (\mathbb{Z}/d\mathbb{Z})^{\ell-1}$.
- Assume K(V) is finite so that L_V has nonzero eigenvalues $\lambda_1, \ldots, \lambda_\ell$. Then $|K(V)| = |\lambda_1 \cdots \lambda_\ell \cdot \gamma/d|$.

Question

What does $\gamma = \text{gcd}(\mathbf{p})$ mean in terms of the structure of A?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• Let $A = \mathbb{F}G$ be the group algebra of a finite group G.

- Let $A = \mathbb{F}G$ be the group algebra of a finite group G.
- Assume $char(\mathbb{F}) = p > 0$ and let $|G| = p^a q$ with gcd(p,q) = 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let $A = \mathbb{F}G$ be the group algebra of a finite group G.
- Assume $char(\mathbb{F}) = p > 0$ and let $|G| = p^a q$ with gcd(p,q) = 1.
- It is known that $gcd(\mathbf{p}) = p^a$. So $K(A) \cong (\mathbb{Z}/p^a\mathbb{Z}) \oplus (\mathbb{Z}/|G|\mathbb{Z})^{\ell-1}$.

- Let $A = \mathbb{F}G$ be the group algebra of a finite group G.
- Assume $char(\mathbb{F}) = p > 0$ and let $|G| = p^a q$ with gcd(p,q) = 1.
- It is known that $gcd(\mathbf{p}) = p^a$. So $K(A) \cong (\mathbb{Z}/p^a\mathbb{Z}) \oplus (\mathbb{Z}/|G|\mathbb{Z})^{\ell-1}$.
- For an arbitrary V, fix an embedding $\{qth \text{ roots of unity in } \mathbb{F}\} \hookrightarrow \mathbb{C}$.

- Let $A = \mathbb{F}G$ be the group algebra of a finite group G.
- Assume $char(\mathbb{F}) = p > 0$ and let $|G| = p^a q$ with gcd(p,q) = 1.
- It is known that $gcd(\mathbf{p}) = p^a$. So $K(A) \cong (\mathbb{Z}/|G|\mathbb{Z})^{\ell-1}$.
- For an arbitrary V, fix an embedding $\{qth \text{ roots of unity in } \mathbb{F}\} \hookrightarrow \mathbb{C}$.
- Say g ∈ G is p-regular if its order is coprime to p. Such an element has a semisimple action on V by Maschke's Theorem.

- Let $A = \mathbb{F}G$ be the group algebra of a finite group G.
- Assume $char(\mathbb{F}) = p > 0$ and let $|G| = p^a q$ with gcd(p,q) = 1.
- It is known that $gcd(\mathbf{p}) = p^a$. So $K(A) \cong (\mathbb{Z}/|G|\mathbb{Z})^{\ell-1}$.
- For an arbitrary V, fix an embedding $\{q$ th roots of unity in $\mathbb{F}\} \hookrightarrow \mathbb{C}$.
- Say g ∈ G is p-regular if its order is coprime to p. Such an element has a semisimple action on V by Maschke's Theorem.
- The Bauer character χ_V of V sends a p-regular element g ∈ G to the sum the images of the eigenvalues of g in C.

- Let $A = \mathbb{F}G$ be the group algebra of a finite group G.
- Assume $char(\mathbb{F}) = p > 0$ and let $|G| = p^a q$ with gcd(p,q) = 1.
- It is known that $gcd(\mathbf{p}) = p^a$. So $K(A) \cong (\mathbb{Z}/|G|\mathbb{Z})^{\ell-1}$.
- For an arbitrary V, fix an embedding $\{qth \text{ roots of unity in } \mathbb{F}\} \hookrightarrow \mathbb{C}$.
- Say g ∈ G is p-regular if its order is coprime to p. Such an element has a semisimple action on V by Maschke's Theorem.
- The Bauer character χ_V of V sends a p-regular element g ∈ G to the sum the images of the eigenvalues of g in C.
- Let $g_0 = e, g_1, \ldots, g_\ell$ be *p*-regular conjugacy class representatives.

The character values of simple modules (or projective indecomposable modules, resp.) at g₀,..., g_ℓ give left (or right, resp.) eigenvectors of M_V with eigenvalues χ_V(g₀),..., χ_V(g_ℓ).

- The character values of simple modules (or projective indecomposable modules, resp.) at g₀,..., g_ℓ give left (or right, resp.) eigenvectors of M_V with eigenvalues χ_V(g₀),..., χ_V(g_ℓ).
- If V is tensor-rich then

$$|\mathcal{K}(\mathcal{V})| = \frac{p^a}{|\mathcal{G}|} \cdot \prod_{1 \leq j \leq \ell} (\dim(\mathcal{V}) - \chi_{\mathcal{V}}(g_j)).$$

- The character values of simple modules (or projective indecomposable modules, resp.) at g₀,..., g_ℓ give left (or right, resp.) eigenvectors of M_V with eigenvalues χ_V(g₀),..., χ_V(g_ℓ).
- If V is tensor-rich then

$$|K(V)| = \frac{p^a}{|G|} \cdot \prod_{1 \le j \le \ell} (\dim(V) - \chi_V(g_j)).$$

 Theorem (Bauer): V is tensor-rich if and only if the only p-regular element acting trivially on V is the identity element e ∈ G.

- The character values of simple modules (or projective indecomposable modules, resp.) at g₀,..., g_ℓ give left (or right, resp.) eigenvectors of M_V with eigenvalues χ_V(g₀),..., χ_V(g_ℓ).
- If V is tensor-rich then

$$|K(V)| = \frac{p^a}{|G|} \cdot \prod_{1 \le j \le \ell} (\dim(V) - \chi_V(g_j)).$$

- Theorem (Bauer): V is tensor-rich if and only if the only p-regular element acting trivially on V is the identity element e ∈ G.
- Corollary: A faithful G-representation V is always tensor-rich.

ヘロト 人間 トイヨト イヨト 二日

- The character values of simple modules (or projective indecomposable modules, resp.) at g₀,..., g_ℓ give left (or right, resp.) eigenvectors of M_V with eigenvalues χ_V(g₀),..., χ_V(g_ℓ).
- If V is tensor-rich then

$$|K(V)| = \frac{p^a}{|G|} \cdot \prod_{1 \le j \le \ell} (\dim(V) - \chi_V(g_j)).$$

- Theorem (Bauer): V is tensor-rich if and only if the only p-regular element acting trivially on V is the identity element e ∈ G.
- Corollary: A faithful G-representation V is always tensor-rich.
- Theorem (Burnside): A tensor-rich V is faithful if $char(\mathbb{F}) = 0$.

・ロット 御り とうりょうり しつ

• Let $G = \mathfrak{S}_4$, $A = \mathbb{F}G$, and $\mathbb{F} = \mathbb{F}_p$ for p > 0.

- Let $G = \mathfrak{S}_4$, $A = \mathbb{F}G$, and $\mathbb{F} = \mathbb{F}_p$ for p > 0.
- Simple A-modules D^{λ} are indexed by *p*-regular partitions $\lambda \vdash 4$, i.e., those with no parts repeated *p* or more times.

.

- Let $G = \mathfrak{S}_4$, $A = \mathbb{F}G$, and $\mathbb{F} = \mathbb{F}_p$ for p > 0.
- Simple A-modules D^{λ} are indexed by *p*-regular partitions $\lambda \vdash 4$, i.e., those with no parts repeated *p* or more times.
- For p = 2, Brauer character tables and Cartan matrices are

$$e \quad (ijk)$$

$$D^{4} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \text{ and } C = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$$

- ロ ト - (周 ト - (日 ト - (日 ト -)日

- Let $G = \mathfrak{S}_4$, $A = \mathbb{F}G$, and $\mathbb{F} = \mathbb{F}_p$ for p > 0.
- Simple A-modules D^{λ} are indexed by *p*-regular partitions $\lambda \vdash 4$, i.e., those with no parts repeated *p* or more times.
- For p = 2, Brauer character tables and Cartan matrices are

$$e$$
 (ijk)
 $D^4 \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$ and $C = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$.

• $\mathbf{s} = (1,2)^t$, $\mathbf{p} = C\mathbf{s} = (8,8)^t$, $\gamma = \gcd(\mathbf{p}) = 8 = p$ -Sylow order of \mathfrak{S}_4 .

- Let $G = \mathfrak{S}_4$, $A = \mathbb{F}G$, and $\mathbb{F} = \mathbb{F}_p$ for p > 0.
- Simple A-modules D^λ are indexed by *p*-regular partitions λ ⊢ 4, i.e., those with no parts repeated p or more times.
- For p = 2, Brauer character tables and Cartan matrices are

$$e$$
 (ijk)
 D^4 $\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$ and $C = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$.

• $\mathbf{s} = (1, 2)^t$, $\mathbf{p} = C\mathbf{s} = (8, 8)^t$, $\gamma = \gcd(\mathbf{p}) = 8 = p$ -Sylow order of \mathfrak{S}_4 . • $V = D^{31}$ is tensor-rich $(\chi_V(g) = \dim(V) \text{ implies } g = e)$.

- Let $G = \mathfrak{S}_4$, $A = \mathbb{F}G$, and $\mathbb{F} = \mathbb{F}_p$ for p > 0.
- Simple A-modules D^λ are indexed by *p*-regular partitions λ ⊢ 4, i.e., those with no parts repeated p or more times.
- For p = 2, Brauer character tables and Cartan matrices are

$$e$$
 (ijk)
 D^4 $\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$ and $C = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$.

• $\mathbf{s} = (1,2)^t$, $\mathbf{p} = C\mathbf{s} = (8,8)^t$, $\gamma = \gcd(\mathbf{p}) = 8 = p$ -Sylow order of \mathfrak{S}_4 .

- $V = D^{31}$ is tensor-rich $(\chi_V(g) = \dim(V) \text{ implies } g = e)$.
- L_V and its Smith normal form are $\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

- Let $G = \mathfrak{S}_4$, $A = \mathbb{F}G$, and $\mathbb{F} = \mathbb{F}_p$ for p > 0.
- Simple A-modules D^{λ} are indexed by *p*-regular partitions $\lambda \vdash 4$, i.e., those with no parts repeated *p* or more times.
- For p = 2, Brauer character tables and Cartan matrices are

$$e$$
 (ijk)
 D^4 $\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$ and $C = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$.

• $\mathbf{s} = (1,2)^t$, $\mathbf{p} = C\mathbf{s} = (8,8)^t$, $\gamma = \gcd(\mathbf{p}) = 8 = p$ -Sylow order of \mathfrak{S}_4 .

- $V = D^{31}$ is tensor-rich $(\chi_V(g) = \dim(V) \text{ implies } g = e)$.
- L_V and its Smith normal form are $\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
- K(V) = 0 and $|K(V)| = 1 = \frac{8}{24}(2 (-1)).$

• For p = 3 the Brauer character tables and Cartan matrices are

$$\begin{array}{cccc} e & (ij) & (ij)(kl) & (ijkl) \\ D^{4} & & \\ D^{31} & & \\ D^{22} & & \\ D^{211} & & -1 & 1 & -1 \\ 3 & -1 & -1 & 1 & \\ \end{array} \right) \quad \text{and} \quad C = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

April 28, 2018 25 / 28

3

イロト イポト イヨト イヨト

• For p = 3 the Brauer character tables and Cartan matrices are

$$\begin{array}{cccc} e & (ij) & (ij)(kl) & (ijkl) \\ D^4 \\ D^{31} \\ D^{22} \\ D^{211} \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 3 & -1 & -1 & 1 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

• $\mathbf{s} = (1, 3, 1, 3)^t$, $\mathbf{p} = C\mathbf{s} = (3, 3, 3, 3)^t$, $\gamma = \gcd(\mathbf{p}) = 3$, $|\mathfrak{S}_4| = 3 \cdot 8$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• For p = 3 the Brauer character tables and Cartan matrices are

$$\begin{array}{cccc} e & (ij) & (ij)(kl) & (ijkl) \\ D^{4} \\ D^{31} \\ D^{22} \\ D^{211} \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 3 & -1 & -1 & 1 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

• $\mathbf{s} = (1, 3, 1, 3)^t$, $\mathbf{p} = C\mathbf{s} = (3, 3, 3, 3)^t$, $\gamma = \gcd(\mathbf{p}) = 3$, $|\mathfrak{S}_4| = 3 \cdot 8$. • $V = D^{31}$ is tensor-rich $(\chi_V(g) = \dim(V) \text{ implies } g = e)$.

(人間) トイヨト イヨト ニヨ

• For p = 3 the Brauer character tables and Cartan matrices are

$$\begin{array}{cccc} e & (ij) & (ij)(kl) & (ijkl) \\ D^4 \\ D^{31} \\ D^{22} \\ D^{211} \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 3 & -1 & -1 & 1 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

• $\mathbf{s} = (1, 3, 1, 3)^t$, $\mathbf{p} = C\mathbf{s} = (3, 3, 3, 3)^t$, $\gamma = \gcd(\mathbf{p}) = 3$, $|\mathfrak{S}_4| = 3 \cdot 8$. • $V = D^{31}$ is tensor-rich $(\chi_V(g) = \dim(V) \text{ implies } g = e)$. • L_V and its Smith normal form are $\begin{pmatrix} 3 & -2 & 0 & -1 \\ -1 & 2 & 0 & -1 \\ 0 & -1 & 3 & -2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 \end{pmatrix}$.

• For p = 3 the Brauer character tables and Cartan matrices are

$$\begin{array}{cccc} e & (ij) & (ij)(kl) & (ijkl) \\ D^4 \\ D^{31} \\ D^{22} \\ D^{211} \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 3 & -1 & -1 & 1 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

s = (1,3,1,3)^t, p = Cs = (3,3,3,3)^t, γ = gcd(p) = 3, |G₄| = 3 · 8.
V = D³¹ is tensor-rich (χ_V(g) = dim(V) implies g = e).

• L_V and its Smith normal form are $\begin{pmatrix} 3 & -2 & 0 & -1 \\ -1 & 2 & 0 & -1 \\ 0 & -1 & 3 & -2 \\ 0 & -1 & -1 & 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. • $K(V) = \mathbb{Z}/4\mathbb{Z}, |K(V)| = 4 = \frac{3}{24}(3-1)(3-(-1))(3-(-1)).$

• For $p \ge 5$, the Brauer character table is the ordinary one (and C = I):

$$\begin{array}{cccc} e & (ij) & (ij)(kl) & (ijk) & (ijkl) \\ D^4 \\ D^{31} \\ D^{22} \\ D^{211} \\ D^{1111} \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 3 & 1 & 0 & -1 & -1 \\ 2 & 0 & -1 & 2 & 0 \\ 3 & -1 & 0 & -1 & 1 \\ 1 & -1 & 1 & 1 & -1 \end{pmatrix}$$

٠

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• For $p \ge 5$, the Brauer character table is the ordinary one (and C = I):

$$\begin{array}{c} e & (ij) & (ij)(kl) & (ijk) & (ijkl) \\ D^4 \\ D^{31} \\ D^{22} \\ D^{211} \\ D^{1111} \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 3 & 1 & 0 & -1 & -1 \\ 2 & 0 & -1 & 2 & 0 \\ 3 & -1 & 0 & -1 & 1 \\ 1 & -1 & 1 & 1 & -1 \end{pmatrix}$$

• $\mathbf{p} = \mathbf{s} = (1, 3, 2, 3, 1)^t$, $\gamma = \gcd(\mathbf{p}) = 1 = p$ -Sylow order of \mathfrak{S}_4 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

• For $p \ge 5$, the Brauer character table is the ordinary one (and C = I):

$$e \quad (ij) \quad (ij)(kl) \quad (ijk) \quad (ijkl)$$

$$D^{4} = D^{31} = D^{22} = D^{211} = D^{2211} = D^{211} = D^{211} = D^{211} = D^{1111} = D^{11111} = D^{1111} = D^{1111} = D^{11111} = D^{1111} = D^{11111} = D^{1111} = D^{11111} = D^{11111} = D^{1111} = D^{1111}$$

Jia Huang (UNK)

 ■ ▶ ▲ ■ ▶ ■ ○ ९ ○

 April 28, 2018
 26 / 28

< ロ > < 同 > < 回 > < 回 > < 回 > <

• For $p \ge 5$, the Brauer character table is the ordinary one (and C = I):

$$\begin{array}{ccccc} e & (ij) & (ij)(kl) & (ijk) & (ijkl) \\ D^4 \\ D^{31} \\ D^{22} \\ D^{211} \\ D^{1111} \end{array} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & 0 & -1 & -1 \\ 2 & 0 & -1 & 2 & 0 \\ 3 & -1 & 0 & -1 & 1 \\ 1 & -1 & 1 & 1 & -1 \end{pmatrix}.$$

•
$$\mathbf{p} = \mathbf{s} = (1, 3, 2, 3, 1)^t$$
, $\gamma = \gcd(\mathbf{p}) = 1 = p$ -Sylow order of \mathfrak{S}_4 .
• $L_V = \begin{pmatrix} 3 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & -1 & 0 \\ 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & 0 & -1 & 3 \end{pmatrix}$ has Smith normal form $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.
• $K(V) = \mathbb{Z}/4\mathbb{Z}$, $|K(V)| = 4 = \frac{1}{24}(3-1)(3-0)(3-(-1))(3-(-1))$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Proposition (Grinberg, H. and Reiner)

Let V be an $\mathbb{F}G$ -module and let $p = char(\mathbb{F})$.

- The subgroup N of G generated by the p-regular elements acting trivially on V is normal.
- Regarded as an G/N-module, V is tensor-rich.

• • = • • = • =

Proposition (Grinberg, H. and Reiner)

Let V be an $\mathbb{F}G$ -module and let $p = char(\mathbb{F})$.

- The subgroup N of G generated by the p-regular elements acting trivially on V is normal.
- Regarded as an G/N-module, V is tensor-rich.

Theorem (Burciu)

A module V over a Hopf algebra A is the "inflation" of a tensor-rich module over $A/\bigcap_{k\geq 0} \operatorname{Ann}_A(V^{\otimes k})$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Thank you!

Jia Huang (UNK)

Critical groups for Hopf algebra modules

April 28, 2018 28 / 28

э

A D N A B N A B N A B N