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Domination in graphs

Definition

A dominating set for a graph G is a subset D of vertices such that
every vertex not in D is adjacent to some vertex in D.

Definition

The domination number γ(G ) of G is the cardinality of a minimum
dominating set of G .

Example

γ(Kn) = 1, γ(Pn) = γ(Cn) = dn/3e.

Proposition

It is NP-hard to find a minimum dominating set for a graph G .
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Applications and link failure

There are many applications of domination in networks, such
as resource allocation.

In reality the structure of a network might change.

An example is link failure (due to various reasons).

The domination number of a graph weakly will increase when
some edges are deleted.

When will the domination number strictly increase?
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The bondage number

Definition (Fink, Jacobson, Kinch, and Roberts, 1990)

The bondage number b(G ) of a graph G is defined as the smallest
number of edges whose removal from G results in a graph with
larger domination number.

Example

b(Kn) = dn/2e, b(Cn) = b(Pn) + 1, and

b(Pn) =

{
2, n ≡ 1 mod 3,

1, otherwise.
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Bounds for the bondage number

Proposition (Hu and Xu 2012)

It is NP-hard to determine the bondage number b(G ).

Lemma (Hartnell and Rall 1994)

For any edge uv ∈ E (G ), b(G ) ≤ d(u) + d(v)− 1− |N(u)∩N(v)|.

Corollary

For any graph G with maximum degree ∆(G ) and minimum
degree δ(G ), one has b(G ) ≤ ∆(G ) + δ(G )− 1.

Jia Huang bondage number of graphs on surfaces



Conjectures

Conjecture (Teschner 1995)

For any graph G , b(G ) ≤ 3
2∆(G ).

Conjecture (Dunbar-Haynes-Teschner-Volkmann 1998)

For any planar graph G, b(G ) ≤ ∆(G ) + 1.
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Early results

Theorem (Kang and Yuan 2000)

For any planar graph G, b(G ) ≤ min{∆(G ) + 2; 8}.

Theorem (Carlson and Develin 2006)

Let G be a graph embedded on a torus. Then b(G ) ≤ ∆(G ) + 3.

Remark

The method of Carlson and Develin provides a simpler proof for
the result of Kang and Yuan.
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Graph embedding on surfaces

Classification Theorem for Surfaces

Any surface S is homeomorphic to either of the following surfaces:

Sh obtained from a sphere by adding h ≥ 0 handles,

Nk obtained from a sphere by adding k ≥ 1 crosscaps.

Definition

A surface S is an orientable surface of genus h if S ∼= Sh, or a
non-orientable surface of genus k if S ∼= Nk .

Example

The torus, the projective plane, and the Klein bottle are
homeomorphic to S1, N1, and N2, respectively.
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Upper bound in terms of genera

Theorem (Gagarin and Zverovich)

Let G be a graph embeddable on an orientable surface of genus h
and a non-orientable surface of genus k. Then

b(G ) ≤ min{∆(G ) + h + 2,∆(G ) + k + 1}.

Remark (Gagarin and Zverovich)

When h and k are large one can achieve better results, such as

b(G ) ≤ ∆(G ) +


h + 1, if h ≥ 8,

h, if h ≥ 11,

k, if k ≥ 3,

k − 1, if k ≥ 6.
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Euler characteristic

Definition

The Euler characteristic of a surface S is defined as

χ(S) =

{
2− 2h, S ∼= Sh,

2− k, S ∼= Nk .

Example

S S0 S1 S2 N1 N2 N3

χ 2 0 −2 1 0 −1

Euler’s Formula

If a graph G admits a (2-cell) embedding on a surface S with
V (G ) = {vertices}, E (G ) = {edges}, F (G ) = {faces}, then

|V (G )| − |E (G )|+ |F (G )| = χ(S).
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An improved upper bound

Theorem (H. and Shen)

Let G be a graph embedded on a surface whose Euler
characteristic χ is as large as possible. Assume χ ≤ 0. Then

b(G ) ≤ ∆(G ) + btc

where t = t(χ) is the largest real root of

z3 + z2 + (3χ− 8)z + 9χ− 12.

Remark

Our theorem implies the earlier result of Gagarin and Zverovich.
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Explicit values

Remark

We have t = t(χ) = 1
3 (D + (25− 9χ)/D − 1) where

D =
(

9
√

9χ3 + 69χ2 − 125χ− 108χ+ 125
) 1

3
.

Example

χ 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
btc 3 3 4 4 4 5 5 5 6 6 6
GZ 3 3 4 5 5 6 6 8 7 10 8

χ -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21
btc 7 7 7 7 7 8 8 8 8 8 9
GZ 12 9 14 9 16 10 18 11 20 11 22
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Approximation

Corollary (H. and Shen)

Let G be a graph embedded on a surface whose Euler
characteristic χ is as large as possible. If χ ≤ 0 then

b(G ) ≤ ∆(G ) + 1 + b
√

4− 3χc.

Remark

This corollary is implied by the previous theorem, but also
asymptotically equivalent to it:

lim
χ→−∞

t(χ)

1 +
√

4− 3χ
= 1.
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Graphs with large girth

Definition

The girth g(G ) of a graph G is the length of the shortest cycle in
G . If G has no cycle then g(G ) =∞ (and b(G ) ≤ 2).

Theorem (H. and Shen)

Let G be a graph embedded on a surface whose Euler characteristic
χ is as large as possible. If χ ≤ 0 and g = g(G ) <∞, then

b(G ) ≤ ∆(G ) +

⌊
2 +

√
g2 − g(g − 2)χ

(g − 2)

⌋
.

In particular, if G is triangle-free, then

b(G ) ≤ ∆(G ) + 1 +
⌊√

4− 2χ
⌋
.
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Graphs with large order: first result

Theorem (Gagarin and Zverovich)

Let G be a connected graph 2-cell embeddable on an orientable
surface of genus h ≥ 1 and a non-orientable surface of genus
k ≥ 1. Let n = |V (G )|. Then

b(G ) ≤ ∆(G ) + dln2 he+ 3 if n ≥ h,

b(G ) ≤ ∆(G ) + dln he+ 3 if n ≥ h1.9,

b(G ) ≤ ∆(G ) + 4 if n ≥ h2.5,

b(G ) ≤ ∆(G ) + dln2 ke+ 2 if n ≥ k/6,

b(G ) ≤ ∆(G ) + dln ke+ 3 if n ≥ k1.6,

b(G ) ≤ ∆(G ) + 3 if n ≥ k2.
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Graphs with large order: improvement

Theorem (H. and Shen)

Let G be a connected graph on a surface whose Euler characteristic
χ is as large as possible. Let n = |V (G )| and assume χ ≤ 0. Then

b(G ) ≤ ∆(G ) +

⌊
1

2
− 3χ

n
+

√
25

4
− 21χ

n
+

9χ2

n2

⌋
.

In particular, we have

b(G ) ≤ ∆(G ) + 9 if n ≥ −χ,

b(G ) ≤ ∆(G ) + 6 if n ≥ −2χ,

b(G ) ≤ ∆(G ) + 5 if n ≥ −3χ,

b(G ) ≤ ∆(G ) + 4 if n ≥ −4χ,

b(G ) ≤ ∆(G ) + 3 if n ≥ −8χ.
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Graphs with large size

Theorem (H. and Shen)

Let G be a connected graph embedded on a surface whose Euler
characteristic χ is as large as possible. Suppose that
m = |E (G )| > −3χ ≥ 0. Then

b(G ) ≤ ∆(G ) +

⌊
3− 18χ

m + 3χ

⌋
.

In particular, we have

b(G ) ≤ ∆(G ) + 8 if m > −6χ,

b(G ) ≤ ∆(G ) + 7 if m > −6.6χ,

b(G ) ≤ ∆(G ) + 6 if m > −7.5χ,

b(G ) ≤ ∆(G ) + 5 if m > −9χ,

b(G ) ≤ ∆(G ) + 4 if m > −12χ,

b(G ) ≤ ∆(G ) + 3 if m > −21χ.
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Thank you!
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