An improved upper bound for the bondage number of graphs on surfaces

Jia Huang

Department of Mathematics and Statistics
University of Nebraska at Kearney E-mail address: huangj2@unk.edu

This is joint work with Jian Shen.

June 17, 2018

Domination in graphs

Definition

A dominating set for a graph G is a subset D of vertices such that every vertex not in D is adjacent to some vertex in D.

Definition

The domination number $\gamma(G)$ of G is the cardinality of a minimum dominating set of G.

Example

$\gamma\left(K_{n}\right)=1, \gamma\left(P_{n}\right)=\gamma\left(C_{n}\right)=\lceil n / 3\rceil$.

Proposition

It is NP-hard to find a minimum dominating set for a graph G.

Applications and link failure

- There are many applications of domination in networks, such as resource allocation.
- In reality the structure of a network might change.
- An example is link failure (due to various reasons).
- The domination number of a graph weakly will increase when some edges are deleted.
- When will the domination number strictly increase?

The bondage number

Definition (Fink, Jacobson, Kinch, and Roberts, 1990)

The bondage number $b(G)$ of a graph G is defined as the smallest number of edges whose removal from G results in a graph with larger domination number.

Example

$b\left(K_{n}\right)=\lceil n / 2\rceil, b\left(C_{n}\right)=b\left(P_{n}\right)+1$, and

$$
b\left(P_{n}\right)= \begin{cases}2, & n \equiv 1 \bmod 3 \\ 1, & \text { otherwise }\end{cases}
$$

Bounds for the bondage number

Proposition (Hu and Xu 2012)

It is NP-hard to determine the bondage number $b(G)$.

Lemma (Hartnell and Rall 1994)
For any edge $u v \in E(G), b(G) \leq d(u)+d(v)-1-|N(u) \cap N(v)|$.

Corollary

For any graph G with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$, one has $b(G) \leq \Delta(G)+\delta(G)-1$.

Conjectures

Conjecture (Teschner 1995)
 For any graph $G, b(G) \leq \frac{3}{2} \Delta(G)$.

Conjecture (Dunbar-Haynes-Teschner-Volkmann 1998)

For any planar graph $G, b(G) \leq \Delta(G)+1$.

Early results

Theorem (Kang and Yuan 2000)

For any planar graph $G, b(G) \leq \min \{\Delta(G)+2 ; 8\}$.

Theorem (Carlson and Develin 2006)

Let G be a graph embedded on a torus. Then $b(G) \leq \Delta(G)+3$.

Remark

The method of Carlson and Develin provides a simpler proof for the result of Kang and Yuan.

Graph embedding on surfaces

Classification Theorem for Surfaces

Any surface S is homeomorphic to either of the following surfaces:

- S_{h} obtained from a sphere by adding $h \geq 0$ handles,
- N_{k} obtained from a sphere by adding $k \geq 1$ crosscaps.

Definition

A surface S is an orientable surface of genus h if $S \cong S_{h}$, or a non-orientable surface of genus k if $S \cong N_{k}$.

Example

The torus, the projective plane, and the Klein bottle are homeomorphic to S_{1}, N_{1}, and N_{2}, respectively.

Upper bound in terms of genera

Theorem (Gagarin and Zverovich)

Let G be a graph embeddable on an orientable surface of genus h and a non-orientable surface of genus k. Then

$$
b(G) \leq \min \{\Delta(G)+h+2, \Delta(G)+k+1\} .
$$

Remark (Gagarin and Zverovich)

When h and k are large one can achieve better results, such as

$$
b(G) \leq \Delta(G)+ \begin{cases}h+1, & \text { if } h \geq 8 \\ h, & \text { if } h \geq 11 \\ k, & \text { if } k \geq 3 \\ k-1, & \text { if } k \geq 6\end{cases}
$$

Euler characteristic

Definition

The Euler characteristic of a surface S is defined as

$$
\chi(S)= \begin{cases}2-2 h, & S \cong S_{h} \\ 2-k, & S \cong N_{k}\end{cases}
$$

Example

S	S_{0}	S_{1}	S_{2}	N_{1}	N_{2}	N_{3}
χ	2	0	-2	1	0	-1

Euler's Formula

If a graph G admits a (2-cell) embedding on a surface S with $V(G)=\{$ vertices $\}, E(G)=\{$ edges $\}, F(G)=\{$ faces $\}$, then

$$
|V(G)|-|E(G)|+|F(G)|=\chi(S)
$$

An improved upper bound

Theorem (H. and Shen)

Let G be a graph embedded on a surface whose Euler characteristic χ is as large as possible. Assume $\chi \leq 0$. Then

$$
b(G) \leq \Delta(G)+\lfloor t\rfloor
$$

where $t=t(\chi)$ is the largest real root of

$$
z^{3}+z^{2}+(3 \chi-8) z+9 \chi-12
$$

Remark

Our theorem implies the earlier result of Gagarin and Zverovich.

Explicit values

Remark

We have $t=t(\chi)=\frac{1}{3}(D+(25-9 \chi) / D-1)$ where

$$
D=\left(9 \sqrt{9 \chi^{3}+69 \chi^{2}-125 \chi}-108 \chi+125\right)^{\frac{1}{3}}
$$

Example

χ	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
$\lfloor t\rfloor$	3	3	4	4	4	5	5	5	6	6	6
GZ	3	3	4	5	5	6	6	8	7	10	8
χ	-11	-12	-13	-14	-15	-16	-17	-18	-19	-20	-21
$\lfloor t\rfloor$	7	7	7	7	7	8	8	8	8	8	9
GZ	12	9	14	9	16	10	18	11	20	11	22

Approximation

Corollary (H. and Shen)

Let G be a graph embedded on a surface whose Euler characteristic χ is as large as possible. If $\chi \leq 0$ then

$$
b(G) \leq \Delta(G)+1+\lfloor\sqrt{4-3 \chi}\rfloor
$$

Remark

This corollary is implied by the previous theorem, but also asymptotically equivalent to it:

$$
\lim _{\chi \rightarrow-\infty} \frac{t(\chi)}{1+\sqrt{4-3 \chi}}=1
$$

Graphs with large girth

Definition

The girth $g(G)$ of a graph G is the length of the shortest cycle in G. If G has no cycle then $g(G)=\infty$ (and $b(G) \leq 2$).

Theorem (H. and Shen)

Let G be a graph embedded on a surface whose Euler characteristic χ is as large as possible. If $\chi \leq 0$ and $g=g(G)<\infty$, then

$$
b(G) \leq \Delta(G)+\left\lfloor\frac{2+\sqrt{g^{2}-g(g-2) \chi}}{(g-2)}\right\rfloor
$$

In particular, if G is triangle-free, then

$$
b(G) \leq \Delta(G)+1+\lfloor\sqrt{4-2 \chi}\rfloor .
$$

Graphs with large order: first result

Theorem (Gagarin and Zverovich)

Let G be a connected graph 2-cell embeddable on an orientable surface of genus $h \geq 1$ and a non-orientable surface of genus $k \geq 1$. Let $n=|V(G)|$. Then

- $b(G) \leq \Delta(G)+\left\lceil\mathrm{ln}^{2} h\right\rceil+3$ if $n \geq h$,
- $b(G) \leq \Delta(G)+\lceil\ln h\rceil+3$ if $n \geq h^{1.9}$,
- $b(G) \leq \Delta(G)+4$ if $n \geq h^{2.5}$,
- $b(G) \leq \Delta(G)+\left\lceil\ln ^{2} k\right\rceil+2$ if $n \geq k / 6$,
- $b(G) \leq \Delta(G)+\lceil\ln k\rceil+3$ if $n \geq k^{1.6}$,
- $b(G) \leq \Delta(G)+3$ if $n \geq k^{2}$.

Graphs with large order: improvement

Theorem (H. and Shen)

Let G be a connected graph on a surface whose Euler characteristic χ is as large as possible. Let $n=|V(G)|$ and assume $\chi \leq 0$. Then

$$
b(G) \leq \Delta(G)+\left\lfloor\frac{1}{2}-\frac{3 \chi}{n}+\sqrt{\frac{25}{4}-\frac{21 \chi}{n}+\frac{9 \chi^{2}}{n^{2}}}\right\rfloor .
$$

In particular, we have

- $b(G) \leq \Delta(G)+9$ if $n \geq-\chi$,
- $b(G) \leq \Delta(G)+6$ if $n \geq-2 \chi$,
- $b(G) \leq \Delta(G)+5$ if $n \geq-3 \chi$,
- $b(G) \leq \Delta(G)+4$ if $n \geq-4 \chi$,
- $b(G) \leq \Delta(G)+3$ if $n \geq-8 \chi$.

Graphs with large size

Theorem (H. and Shen)

Let G be a connected graph embedded on a surface whose Euler characteristic χ is as large as possible. Suppose that $m=|E(G)|>-3 \chi \geq 0$. Then

$$
b(G) \leq \Delta(G)+\left\lfloor 3-\frac{18 \chi}{m+3 \chi}\right\rfloor
$$

In particular, we have

- $b(G) \leq \Delta(G)+8$ if $m>-6 \chi$,
- $b(G) \leq \Delta(G)+7$ if $m>-6.6 \chi$,
- $b(G) \leq \Delta(G)+6$ if $m>-7.5 \chi$,
- $b(G) \leq \Delta(G)+5$ if $m>-9 \chi$,
- $b(G) \leq \Delta(G)+4$ if $m>-12 \chi$,
- $b(G) \leq \Delta(G)+3$ if $m>-21 \chi$.

Thank you!

