The binomial transformation

Barton Willis
Research Minisymposium ${ }^{1}$
$\lfloor 5 \pi\rfloor$ March $\lfloor 642 \pi\rfloor$
Department of Mathematics and Statistics
University Nebraska at Kearney

Binomial Transform

Definition

Given a sequence F, define a (new) sequence G by

$$
G_{n}=\sum_{k=0}^{n}\binom{n}{k} F_{k}, \quad n \in \mathbf{Z}_{\geq 0}
$$

The sequence G is the binomial transform of F. Symbolically, we'll write $B(F)$ for the binomial transform of F.

- domain $(B)=\operatorname{codomain}(B)=\{f \mid f$ is a sequence $\}$.
- The earliest mention of binomial transformation I know is in The Art of Computer Programming, by Donald Knuth.

(Always) an example

The famous identity $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$ translates to

$$
\mathrm{B}(n \mapsto 1)=n \mapsto 2^{n} .
$$

Conflating a function with its formula, the result is

$$
\mathrm{B}(1)_{n}=2^{n} .
$$

- "Conflate" means to combine several concepts into one.

Linearity is almost invariably a clue

For $G=\mathrm{B}(F)$, the first few terms of G are

$$
\begin{aligned}
& G_{0}=\sum_{k=0}^{0}\binom{0}{k} \mathrm{~F}_{k}=\mathrm{F}_{0}, \\
& G_{1}=\sum_{k=0}^{1}\binom{1}{k} \mathrm{~F}_{k}=\mathrm{F}_{0}+\mathrm{F}_{1}, \\
& G_{2}=\sum_{k=0}^{2}\binom{2}{k} \mathrm{~F}_{k}=\mathrm{F}_{0}+2 \mathrm{~F}_{1}+\mathrm{F}_{2} .
\end{aligned}
$$

For $k \in \mathbf{Z}_{\geq 0}$, we have $G_{k} \in \operatorname{span}\left\{F_{0}, F_{1}, F_{2}, \ldots, F_{k}\right\}$.

Be Nice

Translated to matrix language, $G=\mathrm{B}(F)$ has the nice form

$$
\left[\begin{array}{c}
G_{0} \\
G_{1} \\
G_{2} \\
G_{3} \\
G_{4} \\
\vdots
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & \ldots \\
1 & 3 & 3 & 1 & 0 & \ldots \\
1 & 4 & 6 & 4 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
F_{0} \\
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
\vdots
\end{array}\right] .
$$

- The size of the matrix is $\infty \times \infty$. That's commonplace.
- The matrix is lower triangular-that makes the sums finite.
- The matrix completely describes B and the other way too. We might as well conflate this matrix with B.

What does a matrix have?

Matrices have transposes. What's the transpose of B applied to F ?

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & \ldots \\
0 & 1 & 2 & 3 & 4 & \ldots \\
0 & 0 & 1 & 3 & 6 & \ldots \\
0 & 0 & 0 & 1 & 4 & \ldots \\
0 & 0 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
F_{0} \\
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
F_{0}+F_{1}+F_{2}+\cdots \\
F_{1}+2 F_{2}+3 F_{3}+\cdots \\
F_{2}+3 F_{3}+\cdots \\
F_{3}+4 F_{4}+\cdots \\
F_{4}+\cdots \\
\vdots
\end{array}\right] .
$$

In non-matrix language, this defines a transformation B^{T} defined by

$$
\mathrm{B}^{T}(F)=n \mapsto \sum_{k=n}^{\infty}\binom{k}{n} F_{k} .
$$

- The matrix is upper triangular-the sums are not finite.
- Ouch! We need to be concerned with convergence.

A transformation so nice, we'll do it twice

Definition

For $q \in \mathbf{Z}_{\geq 0}$, (recursively) define

$$
\mathrm{B}^{(q)}=\left\{\begin{array}{ll}
\text { id } & q=0 \\
\mathrm{~B} \circ \mathrm{~B}^{(q-1)} & q \in \mathbf{Z}_{\geq 1}
\end{array} .\right.
$$

We say $B^{(q)}$ is the q-fold composition of B with itself.
(1) By \circ, we mean function composition.
(2) The function id is the universal identity function:

$$
\text { id }=x \in \text { universal set } \mapsto x
$$

(3) Thus, $\mathrm{B}^{(0)}(F)=F, \mathrm{~B}^{(1)}(F)=\mathrm{B}(F), \mathrm{B}^{(2)}(F)=\mathrm{B}(\mathrm{B}(F)), \ldots$.

A transformation so nice, we'll do it twice

Theorem (Homework)

For $q \in \mathbf{Z}_{\geq 0}$, we have (assuming $0^{0}=1$)

$$
\mathrm{B}^{(q)}(F)=n \mapsto \sum_{k=0}^{n}\binom{n}{k} q^{n-k} F_{k} .
$$

(1) The formula for $\mathrm{B}^{(q)}$ extends from $q \in \mathbf{Z}_{\geq 0}$ to $q \in \mathbf{C}$.
(2) Extensions like this are nice.

Inversion by q-fold composition

Theorem (Homework)

For $q, r \in \mathbf{C}$, we have $\mathrm{B}^{(q)} \circ \mathrm{B}^{(r)}=\mathrm{B}^{(q+r)}$.
(1) $\mathrm{B}^{(q)} \circ \mathrm{B}^{(r)}$ is the composition of $\mathrm{B}^{(q)}$ with $\mathrm{B}^{(r)}$.
(2) Traditional notation: Juxtaposition means composition; thus $B^{(q)} \circ B^{(r)}=B^{(q)} B^{(r)}$.
(0) $B^{(0)}=i d$.
(1) Thus $\mathrm{B}^{(q)-1}=\mathrm{B}^{(-q)}$. Specifically

$$
\mathrm{B}^{-1}(F)=n \mapsto \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} F_{k} .
$$

Fame by association

Theorem (Homework)

For $n, k \in \mathbf{Z}_{\geq 0}$, we have

$$
\binom{n}{k}=\left.\frac{1}{n!} \mathrm{D}_{x}^{(n)}\left(\frac{1}{1-x}\right)\left(\frac{x}{1-x}\right)^{k}\right|_{x \leftarrow 0}
$$

(1) D is the derivative operator.
(2) This theorem implies that the binomial transformation is a member of the (famous) Riordan group.
(3) Each member of the Riordan group is a lower triangular matrix.

Back to basics

For vectors \mathbf{x} and \mathbf{y} and an appropriately sized matrix M, a famous inner product result is

$$
\langle\mathbf{x}, M \mathbf{y}\rangle=\left\langle M^{T} \mathbf{x}, \mathbf{y}\right\rangle .
$$

If M is nonsingular, we have

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, M^{-1} M \mathbf{y}\right\rangle=\left\langle M^{-1 T} \mathbf{x}, M \mathbf{y}\right\rangle
$$

In summation (language) and assuming the standard inner product, this is

$$
\sum_{k=1}^{n} x_{k} y_{k}=\sum_{k=1}^{n}\left(M^{-1} T_{\mathbf{x}}\right)_{k}(M \mathbf{y})_{k}
$$

Back to basics redux

Theorem (Fubini-Tonelli)

Let F and G be sequences and assume that $\sum_{k=0}^{\infty}|F|_{k} \in \mathbf{R}$ and $\sum_{k=0}^{\infty}|G|_{k} \in \mathbf{R}$. For $z \in \mathbf{C}$, we have

$$
\sum_{k=0}^{\infty} G_{k} F_{k}=\sum_{k=0}^{\infty} \mathrm{B}^{(-z) T}(G)_{k} \mathrm{~B}^{(z)}(F)_{k} .
$$

(1) Again, this is a generalization of the well-known linear algebra fact about inner products:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, M^{-1} M \mathbf{y}\right\rangle=\left\langle M^{-1} T \mathbf{x}, M \mathbf{y}\right\rangle
$$

Just the facts

For $a, b, c \in \mathbf{C}$ and $d, e \in \mathbf{C} \backslash \mathbf{Z}_{\leq 0}$, define a sequence Q by

$$
Q_{k}=\left\{\begin{array}{ll}
1 & k=0 \\
\frac{(a+k)(b+k)(c+k)}{(d+k)(e+k)} Q_{k-1} & k \in \mathbf{Z}_{\geq 1}
\end{array} .\right.
$$

Frobenius (1849-1917) tells us that there is a function ${ }_{3} F_{2}$ such that
(1) ${ }_{3} \mathrm{~F}_{2}$ is analytic on $\mathbf{C} \backslash[1, \infty)$.
(2) for $x \in \operatorname{ball}(0 ; 1)$, we have

$$
{ }_{3} F_{2}\left[\begin{array}{c}
a, b, c \\
d, e
\end{array}\right]=\sum_{k=0}^{\infty} Q_{k} x^{k} .
$$

Additionally

(1) Frobenius tells us that ${ }_{3} F_{2}$ can be extended to a differential function on $\mathbf{C} \backslash[1, \infty)$, but not much else.
(2) the function ${ }_{3} \mathrm{~F}_{2}$ has has applications to the dilogarithm function, statistics, the Hahn polynomials, and to the Clebsch-Gordan coefficients.
(3) for $x \in \operatorname{ball}(0 ; 1)$, we have

$$
{ }_{3} F_{2}\left[\begin{array}{c}
a, b, c \\
d, e
\end{array} ; x\right]=1+\frac{a b c}{d e} x+\frac{a(a+1) b(b+1) c(c+1)}{2 d(d+1) e(e+1)} x^{2}+\cdots
$$

(9) If $k \in \mathbf{Z}_{\geq 0}$, then ${ }_{3} F_{2}\left[\begin{array}{c}-k, b, c \\ d, e\end{array} ; x\right]$ is an k th degree polynomial in x.

Theorem (BW)

Let $x \in \mathbf{C}_{\neq 0} \backslash[1, \infty)$, and $a, b, c \in \mathbf{C}$ and $d, e \in \mathbf{C} \backslash \mathbf{Z}_{\leq 0}$ Define

$$
z= \begin{cases}\frac{x}{2} & x \in \mathbf{R} \\ \frac{|x|^{2}}{\bar{x}-x}-\frac{x}{\bar{x}-x}(1-|x-1|) & x \in \mathbf{C} \backslash \mathbf{R}\end{cases}
$$

Assuming a branch (if any) of $z \in \mathbf{C} \mapsto z^{-a}$ to be $(-\infty, 0]$, a convergent series representation for ${ }_{3} \mathrm{~F}_{2}\left[\begin{array}{c}a, b, c \\ d, e\end{array} ; x\right]$ is

$$
(1-z)^{-a} \sum_{k=0}^{\infty}\left[\begin{array}{l}
a \\
1
\end{array}\right]_{k}{ }_{3} \mathrm{~F}_{2}\left[\begin{array}{c}
-k, b, c \\
d, e^{2} ; x / z
\end{array}\right]\left(\frac{z}{z-1}\right)^{k} .
$$

(1) Proof: the binomial transformation.
(2) $\left[\begin{array}{l}a \\ 1\end{array}\right]_{k}=\prod_{\ell=0}^{k-1} \frac{a+\ell}{1+\ell}$.

