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Nonassociativity of binary operations

Let ∗ be a binary operation on a set X . Let x0, x1, . . . , xn be X -valued
indeterminates.

If ∗ is associative then the expression x0 ∗ x1 ∗ · · · ∗ xn is unambiguous.
Example: x0 + x1 + · · ·+ xn.

If ∗ is nonassociative then x0 ∗ x1 ∗ · · · ∗ xn depends on parentheses.

((x0−x1)−x2)−x3

= x0 − x1 − x2 − x3

(x0−x1)−(x2−x3)

= x0 − x1 − x2 + x3

(x0−(x1−x2))−x3

= x0 − x1 + x2 − x3

x0−((x1−x2)−x3)

= x0 − x1 + x2 + x3

x0−(x1−(x2−x3))

= x0 − x1 + x2 − x3

The number of ways to parenthesize x0 ∗ x1 ∗ · · · ∗ xn is the Catalan
number Cn := 1

n+1

(2n
n

)
, e.g., (Cn)6n=0 = (1, 1, 2, 5, 14, 42, 132).

Some results from parenthesizing x0 ∗ x1 ∗ · · · ∗ xn may coincide.
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Nonassocitivity measurements

Parenthesizations of x0 ∗ x1 ∗ · · · ∗ xn are equivalent if they give the
same function from X n+1 to X .

Define C∗,n to be the number of equivalence classes.

Define C̃∗,n to be the largest size of an equivalence class.

((x0−x1)−x2)−x3= x0 − x1 − x2 − x3
(x0−x1)−(x2−x3)= x0 − x1 − x2 + x3
(x0−(x1−x2))−x3= x0 − x1 + x2 − x3
x0−((x1−x2)−x3)= x0 − x1 + x2 + x3
x0−(x1−(x2−x3))= x0 − x1 + x2 − x3

 ⇒


C3 = 5

C−,3 = 4

C̃−,3 = 2

In general, 1 ≤ C∗,n ≤ Cn and 1 ≤ C̃∗,n ≤ Cn.

C∗,n = 1, ∀n ≥ 0 ⇔ ∗ is associative ⇔ C̃∗,n = Cn, ∀n ≥ 0 .

Thus C∗,n and C̃∗,n measure how far ∗ is away from being associative.
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Binary trees

Fact

Parenthesizations of x0 ∗ x1 ∗ · · · ∗ xn ↔ (full) binary trees with n + 1 leaves

Example

0 1
2

3

0
1 2

3 0 1 2 3 0

1 2
3

0
1

2 3

l l l l l
((x0∗x1)∗x2)∗x3 (x0∗(x1∗x2))∗x3 (x0∗x1)∗(x2∗x3) x0∗((x1∗x2)∗x3) x0∗(x1∗(x2∗x3))

δ = (3, 2, 1, 0) δ = (2, 2, 1, 0) δ = (2, 1, 1, 0) δ = (1, 2, 1, 0) δ = (1, 1, 1, 0)
ρ = (0, 1, 1, 1) ρ = (0, 1, 2, 1) ρ = (0, 1, 1, 2) ρ = (0, 1, 2, 2) ρ = (0, 1, 2, 3)

Definition

Let Tn := {binary trees with n + 1 leaves}. If t, t ′ ∈ Tn correspond to
equivalent paranthesizations of x0 ∗ x1 ∗ · · · ∗ xn then define t∼∗t ′.

The left/right depth δi (t)/ρi (t) of leaf i in t ∈ Tn is the number of
edges to the left/right in the path from the root of t down to i .
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A generalization of associativity

Definition

A binary operation ∗ is k-associative if

(x0 ∗ · · · ∗ xk) ∗ xk+1 = x0 ∗ (x1 ∗ · · · ∗ xk+1)

where the operations in parentheses are performed left to right.

For any operation ∗ satisfying exactly the k-associativity, we write
Ck,n := C∗,n (k-modular Catalan number) and C̃k,n := C̃∗,n.

Example (Generalization of “+” (k = 1) and “−” (k = 2))

Let ω := e2πi/k be a primitive kth root of unity. Then ∗ is k-associative if

a ∗ b := ωa + b, ∀a, b ∈ C.

Observation (A generalization of the Tamari order)

The k-associativity gives the k-associative order on binary trees.
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Tamari order and 2-associative order on T4
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Components of k-associative order

Example (comb4 and comb1
4)

Theorem (Hein and H. 2017)

A binary tree is maximal (or minimal) in the k-associative order if and
only if it avoids the binary tree combk+1 (or comb1k) as a subtree.

Each component in k-associative order has a unique minimal tree.

Theorem (Hein and H. 2017)

Two binary trees t and t ′ correspond to equivalent parenthesizations if and
only if δi (t) ≡ δi (t ′) (mod k) for all i .
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Binary trees

Fact

Parenthesizations of x0 ∗ x1 ∗ · · · ∗ xn ↔ (full) binary trees with n + 1 leaves

Example

0 1
2

3

0
1 2

3 0 1 2 3 0

1 2
3

0
1

2 3

l l l l l
((x0∗x1)∗x2)∗x3 (x0∗(x1∗x2))∗x3 (x0∗x1)∗(x2∗x3) x0∗((x1∗x2)∗x3) x0∗(x1∗(x2∗x3))

δ = (3, 2, 1, 0) δ = (2, 2, 1, 0) δ = (2, 1, 1, 0) δ = (1, 2, 1, 0) δ = (1, 1, 1, 0)
ρ = (0, 1, 1, 1) ρ = (0, 1, 2, 1) ρ = (0, 1, 1, 2) ρ = (0, 1, 2, 2) ρ = (0, 1, 2, 3)

Definition

Let Tn := {binary trees with n + 1 leaves}. If t, t ′ ∈ Tn correspond to
equivalent paranthesizations of x0 ∗ x1 ∗ · · · ∗ xn then define t∼∗t ′.
The left/right depth δi (t)/ρi (t) of leaf i in t ∈ Tn is the number of
edges to the left/right in the path from the root of t down to i .
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Connections to other objects

Fact

There are well-known bijections among many families of Catalan objects.

Proposition (Hein and H. 2017)

For n ≥ 0 and k ≥ 1, Ck,n enumerates the following:

1 the set of binary trees with n + 1 leaves avoiding comb1k ,

2 plane trees with n non-root nodes, each of degree less than k,

3 Dyck paths of length 2n avoiding DUk (a down-step immediately
followed by k up-steps),

4 partitions bounded by (n − 1, n − 2, . . . , 1, 0) with each positive part
occurring fewer than k times,

5 2× n standard Young tableaux which contain no list of k consecutive
numbers in the top row other than 1, 2, . . . , ` for any ` ∈ [n],

6 permutations of [n] avoiding 1-3-2 and 23 · · · (k + 1)1.
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Examples of Catalan objects

((x0∗x1)∗x2)∗x3 (x0∗x1)∗(x2∗x3) (x0∗(x1∗x2))∗x3 x0∗(x1∗(x2∗x3)) x0∗((x1∗x2)∗x3)

0 1
2

3
0 1 2 3 0

1 2

3 0
1

2 3

0

1 2
3

0

1 2 3

0

1 2

3

0

1

2

3

0

1

2

3

0

1

2 3

•
• •

• •
• •

•
• • •

• • •

• •
• • •

• •
• • •

• • • •

•
• • •

• • •

∅

1 2 3
4 5 6

1 2 5
3 4 6

1 2 4
3 5 6

1 3 5
2 4 6

1 3 4
2 5 6

123 312 213 321 231

The objects on each row are counted by the Catalan number C3.
The rightmost column gives objects excluded by C2,3.
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Formulas for Ck,n and C̃k ,n

Theorem (Hein and H. 2017)

For k , n ≥ 1, we have

Ck,n =
∑

λ⊆(k−1)n
|λ|<n

n − |λ|
n

mλ(1n) =
∑

0≤j≤(n−1)/k

(−1)j

n

(
n

j

)(
2n − jk

n + 1

)
,

C̃k,n =
∑

0≤j≤n/k

n − jk

n

(
n + j − 1

j

)
.

Moreover, the number of components in k-associative order with size C̃k,n

is Cm, where m is the least positive integer congruent to n modulo k.

Proof.

One proof uses generating functions and Lagrange inversion. The other
proof is more direct, using Dyck paths (and sign-reversing involutions).
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Tamari order and 2-associative order on T4
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Modular Catalan numbers

Example (Ck,n for n ≤ 10 and k ≤ 8)

n 0 1 2 3 4 5 6 7 8 9 10
C1,n 1 1 1 1 1 1 1 1 1 1 1 A000012
C2,n 1 1 2 4 8 16 32 64 128 256 512 A011782
C3,n 1 1 2 5 13 35 96 267 750 2123 6046 A005773
C4,n 1 1 2 5 14 41 124 384 1210 3865 12482 A159772
C5,n 1 1 2 5 14 42 131 420 1375 4576 15431 new
C6,n 1 1 2 5 14 42 132 428 1420 4796 16432 new
C7,n 1 1 2 5 14 42 132 429 1429 4851 16718 new
C8,n 1 1 2 5 14 42 132 429 1430 4861 16784 new
Cn 1 1 2 5 14 42 132 429 1430 4862 16796 A000108

Question

limn→∞ Cn+1/Cn = 4, limn→∞ Ck,n+1/Ck,n =?

There is a formula C3,n =
∑

0≤i≤n−1
(n−1

i

)( i
bi/2c

)
obtained by

Gouyou-Beauchamps and Viennot in studies of directed animals, and
Panyushev using affine Weyl group of the Lie algebra sp2n or so2n+1.

Is there a generalization of this formula from k = 3 to k ≥ 4?
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Double Minus

Definition

Define a ∗ b := ωa + ηb for a, b ∈ C, where ω := e2πi/k and
η := e2πi/`. When k = ` = 2 this gives a	 b := −a− b.

Let C	,n,r be the number of distinct results from x0 	 x1 	 · · · 	 xn
with exactly r plus signs. Let C	,n :=

∑
0≤r≤n+1 C	,n,r .

Theorem (H., Mickey, and Xu 2017)

If n ≥ 1 and 0 ≤ r ≤ n + 1 then

C	,n,r =


(n+1

r

)
, if n + r ≡ 1 (mod 3) and n 6= 2r − 2,(n+1

r

)
− 1, if n + r ≡ 1 (mod 3) and n = 2r − 2,

0, if n + r 6≡ 1 (mod 3).

For n ≥ 1 we have C	,n =

{
2n+1−1

3 , if n is odd;

2n+1−2
3 , if n is even.
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A truncated/modified Pascal Triangle

Example (C	,n,r for n ≤ 10 and 0 ≤ r ≤ n + 1)

r 0 1 2 3 4 5 6 7 8 9 10 11

C	,0,r 1

C	,1,r 1

C	,2,r 2

C	,3,r 4 1

C	,4,r 1 9

C	,5,r 15 6

C	,6,r 7 34 1

C	,7,r 1 56 28

C	,8,r 36 125 9

C	,9,r 10 210 120 1

C	,10,r 1 165 461 55
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OEIS A000975

Definition

The sequence A000975 (An : n ≥ 1) = (1, 2, 5, 10, 21, 42, 85, . . .) has many
equivalent characterizations, such as the following.

A1 = 1, An+1 = 2An if n is odd, and An+1 = 2An + 1 if n is even.

An is the integer with an alternating binary representation of length n.
(1 = 12, 2 = 102, 5 = 1012, 10 = 10102, 21 = 101012, . . .)

An =
⌊
2n+1

3

⌋
= 2n+2−3−(−1)n

6 =

{
2n+1−1

3 , if n is odd;

2n+1−2
3 , if n is even.

An is the number of moves to solve the n-ring Chinese Rings puzzle.
n = 4: 0000-0001-0011-0010-0110-0111-0101-0100-1100-1101-1111

Question

Bijections between different objects enumerated by An?

Any formula for C̃	,n? (1, 1, 1, 2, 3, 5, 9, 16, 28, 54, 99, . . .)
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equivalent characterizations, such as the following.

A1 = 1, An+1 = 2An if n is odd, and An+1 = 2An + 1 if n is even.

An is the integer with an alternating binary representation of length n.
(1 = 12, 2 = 102, 5 = 1012, 10 = 10102, 21 = 101012, . . .)

An =
⌊
2n+1

3

⌋
= 2n+2−3−(−1)n

6 =

{
2n+1−1

3 , if n is odd;

2n+1−2
3 , if n is even.

An is the number of moves to solve the n-ring Chinese Rings puzzle.
n = 4: 0000-0001-0011-0010-0110-0111-0101-0100-1100-1101-1111

Question

Bijections between different objects enumerated by An?
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Further Generalizations

We can define a ∗ b := ωa + ηb for a, b in a ring R, where ω, η ∈ R
satisfy ωk = 1 and η` = 1. But there is interference between ω and η.

Define f ∗ g := xf + yg for all f , g ∈ C[x , y ]/(xd+k − xd , y e+` − y e).

A finite semigroup generated by a single element x can be written as
{x , x2, . . . , xd+k−1} with relation xd+k = xd for some positive
integers d and k which are called the index and period of x .

A parenthesization of f0 ∗ · · · ∗ fn corresponding to t ∈ Tn equals

xδ0(t)yρ0(t)f0 + · · ·+ xδn(t)yρn(t)fn.

Let Cd ,e
k,`,n := C∗,n and C̃d ,e

k,`,n := C̃∗,n be, respectively, the number of
equivalence classes and the largest size of an equivalence class of
parenthesizations of f0 ∗ f1 ∗ · · · ∗ fn.
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The case k = ` = 1: Associativity at depth (d , e)

Theorem (Hein and H. 2019+)

Let k = ` = 1 and t, t ′ ∈ Tn. Then t ∼∗ t ′ if and only if t be obtained
from t ′ by a finite sequence of moves, each of which replaces the maximal
subtree rooted at a node of left depth δ ≥ d − 1 and right depth ρ ≥ e − 1
with a binary tree containing the same number of leaves.

Theorem (Hein and H. 2019+)

If n < d + e then C̃d ,e
n = 1. If n ≥ d + e then C̃d ,e

n = n + 2− d − e
and the number of equivalence classes with this size is

(d+e−2
d−1

)
.

The size of an arbitrary equivalence class is a product of Catalan
numbers Cm0−1 · · ·Cmr−1 with m0 + · · ·+ mr = n + 1.

The generating function Cd ,e(x) :=
∑

n≥0 C
d ,e
n xn+1 satisfies

Cd ,e(x) = x + Cd−1,e(x)Cd ,e−1(x)

where a zero in the supscript is treated as one.
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The case k = ` = e = 1

Corollary (Hein and H. 2019+)

The generating function Cd(x) := Cd ,1(x) satisfies Cd(x) =
x

1− Cd−1(x)
.

Thus the number Cd
n := Cd ,1

n is given by OEIS A080934.

Example

C 1(x) = x
1−x , C 2(x) = x

1− x
1−x

= x(1−x)
1−2x , C 3(x) = x

1− x
1− x

1−x

= x(1−2x)
1−3x+x2

n 1 2 3 4 5 6 7 n

C 1
n 1 1 1 1 1 1 1 1

C 2
n 1 2 4 8 16 32 64 2n−1

C 3
n 1 2 5 13 34 89 233 F2n−1

C 4
n 1 2 5 14 41 122 365 1

2(1 + 3n−1)

Cn 1 2 5 14 42 132 429 1
n+1

(2n
n

)
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Some old results on C d
n

Theorem (Kreweras 1970)

The number of Dyck paths of length 2n with height at most d is Cd
n and

Cd(x) =
xFd+1(x)

Fd+2(x)

where Fi (x) := i for i = 0, 1, and Fn(x) := Fn−1(x)− xFn−2(x), n ≥ 2.

Theorem (de Bruijn–Knuth–Rice 1972)

The number of plane trees with n + 1 nodes of depth at most d is

Cd
n =

22n+1

d + 2

∑
1≤j≤d+1

sin2(jπ/(d + 2)) cos2n(jπ/(d + 2)).

Moreover, Fn(x) =
∑

0≤i≤(n−1)/2
(n−1−i

i

)
(−x)i , ∀n ≥ 1.
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Recent results on C d
n

Theorem (Andrews–Krattenthaler–Orsina–Papi 2002)

The number of ad-nilpotent ideals of the Borel subalgebra b of the Lie
algebra sln(C) with order at most d − 1 is

Cd
n =

∑
i∈Z

2i(d + 2) + 1

2n + 1

(
2n + 1

n − i(d + 2)

)

= det

[(
i −max{−1, j − d}

j − i + 1

)]n−1
i ,j=1

=
∑

0=i0≤i1≤···≤id−1≤id=n

∏
0≤j≤d−2

(
ij+2 − ij − 1

ij+1 − ij

)
.

Theorem (Kitaev–Remmel–Tiefenbruck 2012)

The number of permutations in the symmetric group Sn avoiding 132 and
123 · · · (d + 1) is Cd

n .
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New results on C d
n

Definition

A composition of n is a sequence α = (α1, . . . , α`) of positive integers such
that α1 + · · ·+ α` = n. Let max(α) := max{α1, . . . , α`} and `(α) = `.

Theorem (Hein and H. 2019+)

For n, d ≥ 1, we have

Cd
n =

∑
α|=n

max(α)≤(d+1)/2

(−1)n−`(α)
(
d − α1

α1 − 1

) ∏
2≤i≤`(α)

(
d + 1− αi

αi

)

Theorem (Hein and H. 2019+)

For n, d ≥ 1, the number Cd
n enumerates nilpotent ideals of the algebra Un

of n-by-n upper triangular matrices with order at most d.
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Ideals of upper triangular matrices

Definition

Let Un be the algebra of all n-by-n upper triangular matrices
∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
...

...
. . .

. . .
...

0 0 · · · 0 ∗


where a star ∗ is an arbitrary entry from a fixed field F (e.g., R).

A (two-sided) ideal I of Un is a vector subspace of Un such that
XI ⊆ I and IX ⊆ I for all X ∈ Un.

A ideal I is nilpotent if I k = 0 for some k ≥ 1. The smallest k such
that I k = 0 is the (nilpotent) order of I .

A ideal I of Un is commutative if AB = BA for all A,B ∈ I .
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that I k = 0 is the (nilpotent) order of I .

A ideal I of Un is commutative if AB = BA for all A,B ∈ I .
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Nilpotent ideals

Example (A nilpotent ideal of U6 and its corresponding Dyck path)

I =



0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 0 0 0 0 0



height = 3

Observation

A nilpotent ideal of Un is represented by a matrix of 0’s and ∗’s
separated by a Dyck path of length 2n.

The number of such ideals is the Catalan number Cn := 1
n+1

(2n
n

)
.

The number of all ideals of Un is the Catalan number Cn+1.
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Nilpotent order

Proposition (L. Shapiro, 1975)

The number of commutative ideals of Un is 2n−1(= C 2
n ). (Direct proof?)

Observation

An ideal of Un is commutative iff it has nilpotent order 1 or 2.

The order of a nilpotent ideal I of Un is the largest length d of a
sequence (i1, i2, . . . , id) such that Iij ,ij+1

= ∗ for all j = 1, 2, . . . , d − 1.

Example

I =



0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗
0 0 0 0 0 ∗
0 0 0 0 0 0

 has nilpotent order 4 by the sequence (1, 3, 5, 6).
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Bounce Paths

Observation

The nilpotent order of an ideal I of Un is the number of times the bounce
path of its corresponding Dyck path D goes off the main diagonal.

Example (Bounce Path)

The bounce path has 4 bounces.

The Dyck path D has height 3.

Fact (Andrews–Krattenthaler–Orsina–Papi 2002, Haglund 2008)

Bijection ζ : Dyck paths with height d ↔ Dyck paths with d bounces.

Jia Huang (UNK) Variations of the Catalan Number April 1, 2019 27 / 30



Bounce Paths

Observation

The nilpotent order of an ideal I of Un is the number of times the bounce
path of its corresponding Dyck path D goes off the main diagonal.

Example (Bounce Path)

The bounce path has 4 bounces.

The Dyck path D has height 3.

Fact (Andrews–Krattenthaler–Orsina–Papi 2002, Haglund 2008)

Bijection ζ : Dyck paths with height d ↔ Dyck paths with d bounces.

Jia Huang (UNK) Variations of the Catalan Number April 1, 2019 27 / 30



Bounce Paths

Observation

The nilpotent order of an ideal I of Un is the number of times the bounce
path of its corresponding Dyck path D goes off the main diagonal.

Example (Bounce Path)

The bounce path has 4 bounces.

The Dyck path D has height 3.

Fact (Andrews–Krattenthaler–Orsina–Papi 2002, Haglund 2008)

Bijection ζ : Dyck paths with height d ↔ Dyck paths with d bounces.

Jia Huang (UNK) Variations of the Catalan Number April 1, 2019 27 / 30



Bounce Paths

Observation

The nilpotent order of an ideal I of Un is the number of times the bounce
path of its corresponding Dyck path D goes off the main diagonal.

Example (Bounce Path)

The bounce path has 4 bounces.

The Dyck path D has height 3.

Fact (Andrews–Krattenthaler–Orsina–Papi 2002, Haglund 2008)

Bijection ζ : Dyck paths with height d ↔ Dyck paths with d bounces.

Jia Huang (UNK) Variations of the Catalan Number April 1, 2019 27 / 30



More on nilpotent ideals

Theorem (Hein and H. 2019+)

For n, d ≥ 1, the number Cd
n enumerates nilpotent ideals of the algebra Un

of n-by-n upper triangular matrices with order at most d.

Proof.

By the argument on previous slides, the number of nilpotent ideals of Un
with order at most d equals the number of Dyck paths of length 2n with
height at most d ; the latter is Cd

n by Kreweras (1970).

Problem

Find a natural order-preserving bijection between nilpotent ideals of
Un and ad-nilpotent ideals of b. (The exponential map?)

The result on nilpotent ideas of b has been generalized from type A
to other types [Krattenthaler–Orsina–Papi 2002]. Is there a similar
generalization for nilpotent ideals of Un?
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The case e = ` = 1: k-associativity at left depth d

Theorem (Hein and H. 2019+)

We have Cd
2,n = Cd+1

1,n and for d , k ≥ 1 and n ≥ 0,

Cd
3,n =

∑
α|=n+1

h>1⇒αh≤d+1

−

C0
3,α1−d−2 +

δα1,d

2
+ (−1)α1

∑
i+j=α1−1

(d − i

i

)(d + 1− j

j

)

·
∏
h≥2

δαh,d + (−1)αh−1
∑

i+j=αh

(d + 1− i

i

)(d + 1− j

j

)

C 2
k,n = 1 +

∑
1≤i≤n−1

i

n − i

∑
0≤j≤(n−i−1)/k

(−1)j
(
n − i

j

)(
2n − i − jk − 1

n

)

= 1 +
∑

1≤i≤n−1

∑
λ⊆(k−1)n−i

n − i − |λ|
n − i

(
n − |λ| − 1

n − |λ| − i

)
mλ(1

n−i ).
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A final question

Conjecture

For k , ` ≥ 1 and n ≥ 0 the equality Ck,`,n = Ck+`−1,n holds.

Thank you!
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