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Abstract

We study combinatorial aspects of the representation theory of the 0-Hecke algebra

Hn(0), a deformation of the group algebra of the symmetric group Sn.

We study the action of Hn(0) on the polynomial ring in n variables. We show

that the coinvariant algebra of this action naturally carries the regular representation

of Hn(0), giving an analogue of the well-known result for the symmetric group by

Chevalley-Shephard-Todd.

By investigating the action of Hn(0) on coinvariants and flag varieties, we interpret

the generating functions counting the permutations with fixed inverse descent set by

their inversion number and major index.

We also study the Hn(0)-action on the cohomology rings of the Springer fibers, and

similarly interpret the (noncommutative) Hall-Littlewood symmetric functions indexed

by hook shapes.

We generalize the last result from hooks to all compositions by defining an Hn(0)-

action on the Stanley-Reisner ring of the Boolean algebra. By studying this action we

obtain a family of multivariate noncommutative symmetric functions, which specialize

to the noncommutative Hall-Littlewood symmetric functions and their (q, t)-analogues

introduced by Bergeron and Zabrocki, and to a more general family of noncommutative

symmetric functions having parameters associated with paths in binary trees introduced

recently by Lascoux, Novelli, and Thibon.

We also obtain multivariate quasisymmetric function identities from this Hn(0)-

action, which specialize to results of Garsia and Gessel on generating functions of mul-

tivariate distributions of permutation statistics.

More generally, for any finite Coxeter group W , we define an action of its Hecke

algebra HW (q) on the Stanley-Reisner ring of its Coxeter complex. We find the in-

variant algebra of this action, and show that the coinvariant algebra of this action is

isomorphic to the regular representation of HW (q) if q is generic. When q = 0 we find

a decomposition for the coinvariant algebra as a multigraded HW (0)-module.
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Chapter 1

Introduction

1.1 Background and objective

The symmetric group Sn consists of all permutations of [n] := {1, . . . , n} and has group

operation being the composition of permutations. It is generated by s1, . . . , sn−1, where

si := (i, i+ 1) is the transposition of i and i+ 1, with the following relations
s2
i = 1, 1 ≤ i ≤ n− 1,

sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 2,

sisj = sjsi, |i− j| > 1.

The 0-Hecke algebra Hn(0) can be obtained by deforming the above relations, that is,

Hn(0) is the algebra over an arbitrary field F, generated by π1, . . . , πn−1 with relations
π2
i = πi, 1 ≤ i ≤ n− 1,

πiπi+1πi = πi+1πiπi+1, 1 ≤ i ≤ n− 2,

πiπj = πjπi, |i− j| > 1.

In fact, the group algebra of Sn and the 0-Hecke algebra Hn(0) are specializations of

the Hecke algebra Hn(q) at q = 1 and q = 0, respectively (see §2.4).

One can also realize the symmetric group Sn as a group of operators on sequences

a1 · · · an of n integers, with si swapping ai and ai+1. Similarly the 0-Hecke algebra

Hn(0) can be viewed as an algebra of operators on the same kind of sequences, with πi

1
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being the bubble sorting operator which swaps ai and ai+1 if ai > ai+1 and does nothing

otherwise. In order to sort an arbitrary sequence a1 · · · an into an increasing sequence,

it is sufficient to repeatedly applying π1, . . . , πn−1. This sorting procedure is called the

bubble sort, a well known algorithm in computer science.

The symmetric group naturally arises in many areas of mathematics as well as

other subjects like physics, chemistry, etc. The structures and representations of the

symmetric group have been widely studied and its applications have been found in

various fields. The history dates back hundreds of years ago, and the results obtained

and the methods employed have stimulated the development of many mathematical

branches.

The 0-Hecke algebra, however, had not received much attention until recently. It

was first studied by P.N. Norton around 1978 in her doctoral dissertation and her later

journal paper [49]. We review her main results below.

A composition [weak composition resp.] of n is a sequence α = (α1, . . . , α`) of

positive [nonnegative resp.] integers such that the size |α| := α1 + · · ·+ α` of α equals

n. The descent (multi)set of a (weak) composition α is the (multi)set

D(α) := {α1, α1 + α2, . . . , α1 + · · ·+ α`−1}.

The map α 7→ D(α) is a bijection between (weak) compositions of n and (multi)sets

with elements in [n− 1].

Norton [49] showed that

Hn(0) =
⊕
α|=n

Pα (1.1)

summed over all compositions α of n, where every Pα is a (left) indecomposable Hn(0)-

module. It follows that {Pα : α |= n} is a complete list of pairwise non-isomorphic

projective indecomposable Hn(0)-modules, and {Cα : α |= n} is a complete list of

pairwise non-isomorphic simple Hn(0)-modules, where Cα := top(Pα) = Pα/ rad Pα

for all compositions α |= n. Norton’s results inspired further studies on the 0-Hecke

algebra by C.W. Carter [14], M. Fayers [21], P. McNamara [48], and so on.

When F is an algebraically closed field of characteristic zero, it is well known that

the simple Sn-modules Sλ are indexed by partitions λ ` n, and every finite dimensional

Sn-module is a direct sum of simple Sn-modules. In this case there is a classic cor-

respondence between finite dimensional Sn-representations and the ring of symmetric
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functions, via the Frobenius characteristic map ch which sends a direct sum of simple

Sn-modules to the sum of the corresponding Schur functions sλ.

D. Krob and J.-Y. Thibon [39] provided an analogous correspondence for Hn(0)-

representations (over an arbitrary field F). The finite dimensional Hn(0)-modules cor-

respond to the quasisymmetric functions via the quasisymmetric characteristic Ch which

sends a simple Cα to the fundamental quasisymmetric function Fα; the finite dimen-

sional projectiveHn(0)-modules correspond to the noncommutative symmetric functions

via the noncommutative characteristic ch which sends a projective indecomposable Pα

to the noncommutative ribbon Schur function sα. There are also graded versions of the

two characteristic maps Ch and ch for Hn(0)-modules with gradings and filtrations.

The main objective of my research is to find circumstances where the 0-Hecke algebra

naturally acts, and in such circumstances, study the resulting representations of the 0-

Hecke algebra and compare them with the possible counterpart for the symmetric group.

This is motivated by the aforementioned analogy between the 0-Hecke algebra and the

symmetric group, as it is natural to ask for other evidence to support this analogy. We

will focus on various representations of the symmetric group, and try to obtain similar

results for the 0-Hecke algebra.

1.2 Coinvariants and flags

A composition α of n gives rise to a descent class of permutations in Sn; the cardinality

of this descent class is known as the ribbon number rα and its inv-generating function

is the q-ribbon number rα(q). Reiner and Stanton [50] defined a (q, t)-ribbon number

rα(q, t), and gave an interpretation by representations of the symmetric group Sn and

the finite general linear group GL(n,Fq). The goal of Chapter 3 is to find similar

interpretations of various ribbon numbers by representations of the 0-Hecke algebra

Hn(0). The main results are summarized below.

The symmetric group Sn acts on the polynomial ring F[X] := F[x1, . . . , xn] by

permuting the variables, and the 0-Hecke algebra Hn(0) acts on F[X] via the Demazure

operators π1, . . . , πn−1, where

πif :=
xif − xi+1si(f)

xi − xi+1
, ∀f ∈ F[X]. (1.2)
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The coinvariant algebra of Hn(0) coincides with that of Sn, since πif = f if and only

if sif = f for all f ∈ F[X]. The following result for Sn is well-known.

Theorem 1.2.1 (Chevalley-Shephard-Todd). The coinvariant algebra F[X]/(F[X]Sn+ )

is isomorphic to the regular representation of Sn, if F is a field with char(F) = 0.

We give the following analogous result for the 0-Hecke algebra.

Theorem 1.2.2. The coinvariant algebra F[X]/(F[X]Sn+ ) with the Hn(0)-action defined

by (1.2) is isomorphic to the regular representation of Hn(0) for any field F.

We prove this theorem by showing a decomposition of the coinvariant algebra similar

to Norton’s decomposition (1.1). This leads to an F-basis of the coinvariant algebra,

which is closely related to the well-known basis of descent monomials. Our new basis

consists of certain Demazure atoms obtained by consecutively applying the operators

πi = πi−1 to some descent monomials. Theorem 1.2.2 and its proof are also valid when

F is replaced with Z.

It follows from Theorem 1.2.2 that the coinvariant algebra has not only the grading

by the degrees of polynomials, but also the filtration by the length of permutations in

Sn. This completes the following picture.

Ch(Hn(0))
Krob-Thibon

============
∑
w∈Sn

FD(w−1)

Chq(Hn(0))
Krob-Thibon

============∑
w∈Sn

qinv(w)FD(w−1)

q→1
55

oo
q↔t

(Foata-Schützenberger)
//

Cht(F[X]/(F[X]Sn+ ))
New

=====∑
w∈Sn

tmaj(w)FD(w−1)

t→1
ii

Chq,t
(
F[X]/(F[X]Sn+ )

)
New

=====∑
w∈Sn

tmaj(w)qinv(w)FD(w−1)

t→1

hh

q→1

66

Here the inverse descent set

D(w−1) := {i ∈ [n− 1] : w−1(i) > w−1(i+ 1)}

is identified with the composition α of n with D(α) = D(w−1). We will see that rα and

rα(q) appear as coefficients of Fα in Ch(Hn(0)) and Chq(Hn(0)), respectively, in §2.7.
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Next we consider the finite general linear group G = GL(n,Fq), where q is a power

of a prime p, and its Borel subgroup B. The 0-Hecke algebra Hn(0) acts on the flag

variety 1GB = F[G/B] by TwB = BwB if char(F) = p, and this induces an action on

the coinvariant algebra F[X]B/(F[X]G+) of the pair (G,B) (see §3.3.3). By studying

the (graded) multiplicities of the simple Hn(0)-modules in these Hn(0)-modules, we

complete the following diagram, which interprets all the ribbon numbers mentioned

earlier.

rα
Krob-Thibon

============ multCα (Hn(0))

rα(q)
New

=====

multCα (1GB)

q→1

77

oo
q↔t

(Foata-Schützenberger)
//

rα(t)
New

=====

grmultCα

(
F[X]/(F[X]Sn+ )

)
t→1

hh

rα(q, t)
New

=====

grmultCα
(
F[X]B/(F[X]G+)

)
t→1

ff

t→ t
1
q−1

q → 1

66

Finally we consider a family of quotient rings Rµ = F[X]/Jµ indexed by partitions µ

of n, which contains the coinvariant algebra of Sn as a special case (µ = 1n). If F = C
then Rµ is isomorphic to the cohomology rings of the Springer fiber Fµ, carries an Sn-

action, and has graded Frobenius characteristic equal to the modified Hall-Littlewood

symmetric function H̃µ(x; t) (see e.g. Hotta-Springer [33] and Garsia-Procesi [26]).

Using an analogue of the nabla operator, Bergeron and Zabrocki [8] introduced a

noncommutative modified Hall-Littlewood symmetric function H̃α(x; t) and a (q, t)-

analogue H̃α(x; q, t) for all compositions α.

We prove that the Hn(0)-action on F[X] preserves the ideal Jµ if and only if µ is a

hook, and if so then Rµ becomes a projective Hn(0)-module whose graded characteristic

also equals H̃µ(x; t), and whose graded noncommutative characteristic equals H̃µ(x; t),

where µ is viewed as a composition (1k, n− k) with increasing parts.



6

1.3 Stanley-Reisner ring of the Boolean algebra

Let F be an arbitrary field. The symmetric group Sn naturally acts on the polynomial

ring F[X] := F[x1, . . . , xn] by permuting the variables x1, . . . , xn. The invariant algebra

F[X]Sn , which consists of all the polynomials fixed by this Sn-action, is a polynomial

algebra generated by the elementary symmetric functions e1, . . . , en. The coinvariant

algebra F[X]/(F[X]Sn+ ), with (F[X]Sn+ ) = (e1, . . . , en), is a vector space of dimension n!

over F, and if n is not divisible by the characteristic of F then it carries the regular

representation of Sn. A well known basis for F[X]/(F[X]Sn+ ) consists of the descent

monomials. Garsia [24] obtained this basis by transferring a natural basis from the

Stanley-Reisner ring F[Bn] of the Boolean algebra Bn to the polynomial ring F[X]. Here

the Boolean algebra Bn is the set of all subsets of [n] := {1, . . . , n} partially ordered

by inclusion, and F[Bn] is the quotient of the polynomial algebra F [yA : A ⊆ [n]] by the

ideal (yAyB : A and B are incomparable in Bn).

The 0-Hecke algebraHn(0) acts on F[X] by the Demazure operators, having the same

invariant algebra as the Sn-action on F[X]. According to Theorem 1.2.2, the coinvariant

algebra F[X]/(F[X]Sn+ ) is also isomorphic to the regular representation of Hn(0), for any

field F. We prove this result by constructing another basis for F[X]/(F[X]Sn+ ) which

consists of certain polynomials whose leading terms are the descent monomials. This

and the previously mentioned connection between the Stanley-Reisner ring F[Bn] and

the polynomial ring F[X] motivate us to define an Hn(0)-action on F[Bn].

We define such an action and investigate it in Chapter 4. It turns out that our

Hn(0)-action on F[Bn] has similar definition and properties to the Hn(0)-action on

F[X]. It preserves the Nn+1-multigrading of F[Bn] and has invariant algebra equal

to a polynomial algebra F[Θ], where Θ is the set of rank polynomials θi (the usual

analogue of ei in F[Bn]). We show that the Hn(0)-action is Θ-linear and thus descends

to the coinvariant algebra F[Bn]/(Θ). We will see that F[Bn]/(Θ) carries the regular

representation of Hn(0).

Furthermore, using the Hn(0)-action on F[Bn] we obtain a complete noncommu-

tative analogue for the remarkable representation theoretic interpretation of the Hall-

Littlewood symmetric functions mentioned in the previous section. In the analogous

case of Hn(0) acting on F[X], one only has a partial noncommutative analogue for
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hooks.

Theorem 1.3.1. Let α be a composition of n. Then there exists a homogeneous

Hn(0)-stable ideal Iα of the multigraded algebra F[Bn] such that the quotient algebra

F[Bn]/Iα becomes a projective Hn(0)-module with multigraded noncommutative charac-

teristic equal to

H̃α(x; t1, . . . , tn−1) :=
∑
β4α

tD(β)sβ inside NSym[t1, . . . , tn−1].

Moreover, one has H̃α(x; t, t2, . . . , tn−1) = H̃α(x; t), and one obtains H̃α(x; q, t) from

H̃1n(x; t1, . . . , tn−1) by taking ti = ti for all i ∈ D(α), and taking ti = qn−i for all

i ∈ [n− 1] \D(α).

Here the notation β4α means α and β are compositions of n with D(β) ⊆ D(α),

and tS denotes the product
∏
i∈S ti over all elements i in a multiset S, including the

repeated ones. We also generalize the basic properties of H̃α(x; t) given in [8] to the

multivariate H̃α(x; t1, . . . , tn−1).

Note that H̃1n(x; t1, . . . , tn−1) is the multigraded noncommutative characteristic of

the coinvariant algebra F[Bn]/(Θ), from which one sees that F[Bn]/(Θ) carries the reg-

ular representation of Hn(0). Specializations of H̃1n(x; t1, . . . , tn−1) include not only

H̃α(x; q, t), but also a more general family of noncommutative symmetric functions de-

pending on parameters associated with paths in binary trees introduced recently by

Lascoux, Novelli, and Thibon [42].

Next we study the quasisymmetric characteristic of F[Bn]. We combine the usual

Nn+1-multigrading of F[Bn] (recorded by t := t1, . . . , tn−1) with the length filtration of

Hn(0) (recorded by q) and obtain an N×Nn+1-multigraded quasisymmetric character-

istic for F[Bn].

Theorem 1.3.2. The N× Nn+1-multigraded quasisymmetric characteristic of F[Bn] is

Chq,t(F[Bn]) =
∑
k≥0

∑
α∈Com(n,k+1)

tD(α)
∑
w∈Sα

qinv(w)FD(w−1)

=
∑
w∈Sn

qinv(w)tD(w)FD(w−1)∏
0≤i≤n(1− ti)

=
∑
k≥0

∑
p∈[k+1]n

tp′1 · · · tp′kq
inv(p)FD(p).
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Here we identify FI with Fα if D(α) = I ⊆ [n− 1]. The set Com(n, k) consists of all

weak compositions of n with length k. We also define Sα := {w ∈ Sn : D(w) ⊆ D(α)}.
The set [k + 1]n consists of all words of length n on the alphabet [k + 1]. Given

p = (p1, . . . , pn) ∈ [k + 1]n, we write

p′i := #{j : pj ≤ i},

inv(p) := #{(i, j) : 1 ≤ i < j ≤ n : pi > pj},

D(p) := {i : pi > pi+1}.

Let psq;`(Fα) := Fα(1, q, q2, . . . , q`−1, 0, 0, . . .). Then applying
∑

`≥0 u
`
1psq1;`+1 and

the specialization ti = qi2u2 for all i = 0, 1, . . . , n to Theorem 1.3.2, we recover the

following result of Garsia and Gessel [25, Theorem 2.2] on the generating function of

multivariate distribution of five permutation statistics:∑
w∈Sn q

inv(w)
0 q

maj(w−1)
1 u

des(w−1)
1 q

maj(w)
2 u

des(w)
2

(u1; q1)n(u2; q2)n
=
∑
`,k≥0

u`1u
k
2

∑
(λ,µ)∈B(`,k)

q
inv(µ)
0 q

|λ|
1 q
|µ|
2 .

Here (u; q)n :=
∏

0≤i≤n(1−qiu), the set B(`, k) consists of all pairs of weak compositions

λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) satisfying the conditions ` ≥ λ1 ≥ · · · ≥ λn,

max{µi : 1 ≤ i ≤ n} ≤ k, and λi = λi+1 ⇒ µi ≥ µi+1 (such pairs (λ, µ) are sometimes

called bipartite partitions), and inv(µ) := #{(i, j) : 1 ≤ i < j ≤ n, µi > µj}. Some

further specializations of Theorem 1.3.2 imply identities of MacMahon-Carlitz and Adin-

Brenti-Roichman (see §4.2.6).

Finally let W be any finite Coxeter group with Coxeter complex ∆(W ) and Hecke

algebra HW (q). In Chapter 5, we generalize our Hn(0)-action on F[Bn] to an HW (q)-

action on the Stanley-Reisner ring of ∆(W ). We show that the invariant algebra of

this HW (q)-action is essentially the same as the invariant algebra of the Sn-action on

F[∆(W )], and prove that the coinvariant algebra of this HW (q)-action carries the regular

representation of HW (q) for generic q. We also study the special case when q = 0.



Chapter 2

Preliminaries

2.1 Finite Coxeter groups

A finite Coxeter group is a finite group with the following presentation

W := 〈s1, . . . , sd : s2
i = 1, (sisjsi · · · )mij = (sjsisj · · · )mij , 1 ≤ i 6= j ≤ d〉

where mij ∈ {2, 3, . . .} and (aba · · · )m is an alternating product of m terms. We call

(W,S) a finite Coxeter system, where S := {s1, . . . , sd}. We often identify a subset J

of S with the set {j : sj ∈ J} of the subscripts of the elements in J . If an expression

w = si1 · · · sik is the shortest one among all such expressions, then it is said to be reduced

and k is the length `(w) of w. The descent set of w is D(w) := {s ∈ S : `(ws) < `(w)}
and its elements are called the descents of w.

The (left) weak order is a partial order on W such that u ≤ w if and only if

`(w) = `(u) + `(wu−1). Given J ⊆ S, the descent class of J consists of the elements

of W with descent set J , and turns out to be an interval under the weak order of W ,

denoted by [w0(J), w1(J)]. One sees that w0(J) is the longest element of the parabolic

subgroup WJ := 〈J〉 of W . See Björner and Wachs [11, Theorem 6.2].

Every (left) WJ -coset has a unique minimal coset representative, i.e. a unique ele-

ment of the smallest length. The minimal coset representatives for all WJ -cosets form

the set W J := {w ∈ W : D(w) ⊆ Jc}, where Jc := S \ J . Every element of W can

be written uniquely as w = wJwJ such that wJ ∈ W J and wJ ∈ WJ , and one has

`(w) = `(wJ) + `(wJ). We need the following lemma for later use.

9
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Lemma 2.1.1. Let J ⊆ I ⊆ S, si ∈ S, and w ∈ W J . If i /∈ D(w−1) and siw /∈ W J ,

then siw = wsj for some sj ∈ J , which implies siwWI = wWI .

Proof. If i /∈ D(w−1) and siw /∈ WJ , then siw = usj for some sj ∈ J and u ∈ W with

`(u) = `(w). Since w ∈W J , we have u = siwsj = w by the deletion property of W [10,

Proposition 1.4.7]. Hence siwWI = wsjWI = wWI .

There is a well-known classification of the irreducible finite Coxeter groups. The

symmetric group Sn is the Coxeter group of type An−1. It consists of all permutations

of the set [n] := {1, 2, . . . , n}, and is generated by S = {s1, . . . , sn−1}, where si is the

adjacent transposition (i, i+ 1). The generating set S satisfies the Coxeter presentation

given in the beginning of this section, with mij = 2 if |i−j| > 1 and mij = 3 if |i−j| = 1.

If w ∈ Sn then `(w) = inv(w) := #Inv(w), where

Inv(w) := {(i, j) : 1 ≤ i < j ≤ n, w(i) > w(j)}

and the descent set of w is

D(w) = {i : 1 ≤ i ≤ n− 1, w(i) > w(i+ 1)}.

In type A it is often convenient to use compositions. A composition is a sequence

α = (α1, . . . , α`) of positive integers α1, . . . , α`. The length of α is `(α) := ` and the

size of α is |α| := α1 + · · ·+ α`. If the size of α is n then we say α is a composition of

n and write α |= n.

Let α = (α1, . . . , α`) be a composition of n, and write σj := α1 + · · · + αj for

j = 0, 1, . . . , `; in particular, σ0 = 0 and σ` = n. Let D(α) := {σ1, . . . , σ`−1} be the

descent set of α. The map α 7→ D(α) is a bijection between compositions of n and

subsets of [n−1]. Write α4β if α and β are both compositions of n with D(α) ⊆ D(β).

The parabolic subgroup Sα := 〈si : i ∈ [n− 1] \D(α)〉 consists of all permutations

w ∈ Sn satisfying

{w(σj−1 + 1), . . . , w(σj)} = {σj−1 + 1, . . . , σj}, j = 1, . . . , `.

The set of minimal (left) Sα-coset representatives is Sα := {w ∈ Sn : D(w) ⊆ D(α)}.
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2.2 Stanley-Reisner rings

An (abstract) simplicial complex ∆ on a vertex set V is a collection of finite subsets

of V , called faces, such that a subset of a face is also a face. A maximal face is called

a chamber. If F ⊆ F ′ ∈ ∆, then [F, F ′] consists of all faces between F and F ′. The

dimension of a face F is |F | − 1, and the dimension of ∆ is the maximum dimension of

its faces.

A simplicial complex is pure d-dimensional if every face is contained in a d-dimensional

chamber. A pure (d− 1)-dimensional complex is balanced if there exists a coloring map

r : V → [d] such that every chamber consists of vertices of distinct colors. The rank set

of a face F , denote by r(F ), is the set of all colors of its vertices. If J is a subset of [d]

then the rank-selected subcomplex ∆J consists of all faces whose rank is contained in J .

Let ∆ be a finite or countably infinite simplicial complex. An ordering of its cham-

bers C1, C2, . . . is a shelling order if for all k = 1, 2, . . . we have that ∆k−1 ∩ Ck is pure

(dimCk − 1)-dimensional, where ∆k−1 is the subcomplex generated by C1, . . . , Ck−1.

Given such a shelling order, define the restriction of a chamber Ck to be the face

R(Ck) := {v ∈ Ck : Ck \ {v} ∈ ∆k−1}. (2.1)

Then the union ∪ki=1[R(Ci), Ci] is disjoint and equal to ∆k for all k. Conversely, any

ordering C1, C2, . . . of the chambers satisfying this property must be a shelling.

Example 2.2.1. An example of balanced shellable complex is the Coxeter complex

∆(W ) of a finite Coxeter system (W,S), where S = {s1, . . . , sd}. Its faces are the

parabolic cosets wWJ for all w ∈ W and J ⊆ S; a face wWJ is contained in another

face uWI if wWJ ⊇ uWI . The vertices of ∆(W ) are the maximal proper parabolic

cosets wWic for all w ∈ W and i ∈ [d], where ic := S \ {si}. Coloring the vertices by

r(wWic) = i one sees that ∆(W ) is balanced. A face wWJ has vertices wWic for all

i ∈ Jc, and has rank multiset r(wWJ) = Jc. The chambers of ∆(W ) are the elements

in W , and Björner [9, Theorem 2.1] showed that any linear extension of the weak order

of W gives a shelling order of ∆(W ).

Let ∆ be a finite simplicial complex on the vertex V . The Stanley-Reisner ring of

∆ over an arbitrary field F is defined as F[∆] := F[V ]/I∆, where

I∆ :=
(
vv′ : v, v′ ∈ V, {v, v′} /∈ ∆

)
.
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It has an F-basis of all nonzero monomials. A monomial m = v1 · · · vk in F[∆] is nonzero

if and only if the vertices v1, . . . , vk belong to the same chamber, i.e. the set of v1, . . . , vk

is a face of ∆; we denote this face by supp(m).

Now assume ∆ is balanced with coloring map r : V → [d]. A nonzero monomial

m = v1 · · · vk has rank multiset r(m) consisting of all the ranks r(v1), . . . , r(vk), and is

multigraded by tr(v1) · · · tr(vk). This defines a multigrading on F[∆], with homogeneous

components indexed by multisets of ranks. Such a monomial m is encoded by the pair

(supp(m), r(m)). The rank polynomials in F[∆] are the homogeneous elements

θi :=
∑
r(v)=i

v, i = 1, . . . , d.

One sees that θa11 · · · θ
ad
d equals the sum of all nonzero monomials m with r(m) =

{1a1 , . . . , dad}. Hence F[Θ] is a polynomial subalgebra of F[∆], where Θ := {θ1, . . . , θd}.

Theorem 2.2.2 (Garsia [24] and Kind-Kleinschmidt [38]). If ∆ is balanced and shellable,

then the Stanley-Reisner ring F[∆] is a free F[Θ]-module with a basis

{yR(C) : C is a chamber of ∆}

where R(C) is the restriction of C from (2.1), and yR(C) := yv1 · · · yvk if R(C) is a

chamber with distinct vertices v1, . . . , vk.

If ∆ is balanced and shellable, then so is any rank-selected subcomplex ∆J . For each

chamber F of ∆J , there exists a unique chamber C(F ) of ∆ such that R(C(F )) ⊆ F ⊆
C(F ). A shelling order of ∆J can be defined by saying F ≤ F ′ whenever C(F ) ≤ C(F ′),

and the restriction map is given by RJ(F ) = R(C(F )). See Björner [9, Theorem 1.6].

Therefore Theorem 2.2.2 implies that F[∆J ] is a free module over F[ΘJ ] := F[θj : j ∈ J ]

with a basis of monomials indexed by R(C(F )) for all chambers F of ∆J .

The Stanley-Reisner ring F[P ] of a finite poset P is the same as the Stanley-Reisner

ring of its order complex, whose faces are the chains in P ordered by reverse refinement.

Explicitly,

F[P ] := F[yv : v ∈ P ]/(yuyv : u and v are incomparable in P ).

The nonzero monomials in F[P ] are indexed by multichains of P . Multiplying nonzero

monomials corresponds to merging the indexing multichains; the result is zero if the
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multichains cannot be merged together. If P is ranked then its order complex is balanced

and its Stanley-Reisner ring F[P ] is multigraded.

2.3 Ribbon numbers

A partition of n is a set of positive integers, often written as a descreasing sequence

λ = (λ1, . . . , λ`), such that the size |λ| := λ1 + · · ·λ` equals n; it is denoted by λ ` n.

A partition λ = (λ1, . . . , λ`) can be represented by its Young diagram, which has

λi boxes on its i-th row. If µ is a partition whose Young diagram is contained in the

Young diagram of λ, then one has a skew shape λ/µ. For example,

• •
•
•

• •
•
•

λ = (4, 3, 2, 2) µ = (2, 1) λ/µ

A semistandard Young tableau τ of an arbitrary skew shape λ/µ is a filling of the

skew diagram of λ/µ by positive integers such that every row weakly increases from left

to right and every column strictly increases from top to bottom. Reading these integers

from the bottom row to the top row and proceeding from left to right within each row

gives the reading word w(τ) of τ . Say τ is a standard Young tableau if the integers

appearing in τ are precisely 1, . . . , n without repetition, i.e. w(τ) ∈ Sn. The descents

of a standard Young tableau τ are those numbers i appearing in a higher row of τ than

i+ 1, or in other words, the descents of w(τ)−1. The major index maj(τ) of a standard

Young tableau τ is the sum of all its descents. Denote by SSYT(λ/µ) [SYT(λ/µ) resp.]

the set of all semistandard [standard resp.] Young tableaux of shape λ/µ.

A ribbon is a skew connected diagram without 2× 2 boxes. A ribbon α whose rows

have lengths α1, . . . , α`, ordered from bottom to top, is identified with the composition

α = (α1, . . . , α`). Denote by αc the composition of n with D(αc) = [n− 1] \D(α), and

write
←−α := (α`, . . . , α1), α′ :=

←−
αc =←−α c.

One can check that the ribbon diagram of α′ is the transpose of the ribbon α. An

example is given below.
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α = (2, 3, 1, 1) αc = (1, 2, 1, 3) α′ = (3, 1, 2, 1)

A (standard) ribbon tableau is a standard Young tableau of ribbon shape α. Taking

the reading word τ 7→ w(τ) gives a bijection between SYT(α) and the descent class

of α, which consists of all permutations w in Sn with D(w) = D(α). We know the

descent class of α is an interval [w0(α), w1(α)] under weak order of Sn. For instance,

the descent class of α = (1, 2, 1) is given below.

3
1 4
2

s2

2
1 4
3

s1 s31
2 4
3

s3

2
1 3
4

s1

1
2 3
4

In particular, the ribbon tableaux of w0(α) and w1(α) can be respectively obtained by

• filling with 1, 2, . . . , n the columns of the ribbon α from top to bottom, starting

with the leftmost column and proceeding toward the rightmost column,

• filling with 1, 2, . . . , n the rows of the ribbon α from left to right, starting with the

top row and proceeding toward the bottom row.

Now we recall from Reiner and Stanton [50, §9, §10] the definitions and properties

of various ribbon numbers. Let α = (α1, . . . , α`) be a composition of n, and write

σi := α1 + · · · + αi for i = 0, . . . , `. The ribbon number rα is the cardinality of the

descent class of α. The q-ribbon number is

rα(q) :=
∑
w∈Sn:

D(w)=D(α)

q inv(w) = [n]!q det

(
1

[σj − σi−1]!q

)`
i,j=1

(2.2)
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where [n]!q = [n]q[n−1]q · · · [1]q and [n]q = 1+q+· · ·+qn−1. By Foata and Schützenberger

[23], the two permutation statistics inv and maj are equidistributed on every inverse

descent class {w ∈ Sn : D(w−1) = D(α)}. Thus

rα(t) =
∑
w∈Sn:

D(w)=D(α)

tmaj(w−1) w(τ)↔τ
=======

∑
τ∈SYT(α)

tmaj(τ).

A further generalization, introduced by Reiner and Stanton [50], is the (q, t)-ribbon

number

rα(q, t) :=
∑
w∈Sn:

D(w)=D(α)

wt(w; q, t) = n!q,t det

(
ϕσi−1

1

(σj − σi−1)!q,t

)`
i,j=1

.

Here wt(w; q, t) is some weight defined by a product expression, ϕ : t 7→ tq is the

Frobenius operator, and m!q,t := (1− tqm−1)(1− tqm−q) · · · (1− tqm−qm−1
).

All these ribbon numbers can be interpreted by the homology representation χα

[χαq resp.] of Sn [G = GL(n,Fq) resp.], defined as the top homology of the rank-

selected Coxeter complex ∆(Sn)α [Tits building ∆(G)α resp.], and by the intertwiner

Mα = HomFSn (χα,F[X]) [Mα
q = HomFG

(
χαq ,F[X]

)
resp.] as a module over F[X]Sn

[F[X]G resp.]. By work of Reiner and Stanton [50], one has the following picture.

rα = dimχα

rα(q) =
dimχαq

q→1

66

oo
q↔t

//
rα(t) =

Hilb(Mα/F[X]Sn+ Mα, t)

t→1
jj

rα(q, t) =

Hilb(Mα
q /F[X]G+M

α
q , t)

t→1

gg

t→ t
1
q−1

q → 1

55

We will provide a similar interpretation of these ribbon numbers by representations of

the 0-Hecke algebra Hn(0).

The ribbon numbers are related to the multinomial coefficients by inclusion-exclusion.

Let α = (α1, . . . , α`) be a composition of n. One has the multinomial and q-multinomial

coefficients [
n

α

]
:=

n!

α1! · · ·α`!
= #{w ∈ Sn : D(w) ⊆ D(α)},
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n

α

]
q

:=
[n]!q

[α1]!q · · · [α`]!q
=

∑
w∈Sn:

D(w)⊆D(α)

qinv(w).

Reiner and Stanton [50] introduced the (q, t)-multinomial coefficient[
n

α

]
q,t

:=
n!q,t

α1!q,t · ϕσ1(α2!q,t) · · ·ϕσ`−1(α`!q,t)
=

∑
w∈Sn:D(w)⊆D(α)

wt(w; q, t).

Assume q is a primer power below. Let G = GL(n,Fq) be the finite general lin-

ear group over Fq, and let Pα be the parabolic subgroup of all invertible block upper

triangular matrices whose diagonal blocks have sizes given by the composition α. Then[
n

α

]
q

= |G/Pα|,

[
n

α

]
t

= Hilb
(
F[X]Sα/(F[X]Sn+ ), t

)
,

[
n

α

]
q,t

= Hilb
(
F[X]Pα/(F[X]G+), t

)
.

2.4 Hecke algebra

Suppose that F is an arbitrary field and q is an indeterminate. Let

W := 〈S : s2
i = 1, (sisjsi · · · )mij = (sjsisj · · · )mij , 1 ≤ i 6= j ≤ d〉

be a finite Coxeter group generated by S := {s1, . . . , sd}. The Hecke algebra HW (q) of

W is the associative F(q)-algebra generated by T1, . . . , Td with relations{
(Ti + 1)(Ti − q) = 0, 1 ≤ i ≤ d,
(TiTjTi · · · )mij = (TjTiTj · · · )mij , 1 ≤ i 6= j ≤ d.

By Tits’ solution to the word problem for W [59], the element Tw := Ti1 · · ·Tik is well

defined for any w ∈ W with a reduced expression w = si1 · · · sik . By Bourbaki [12,

Exercise 23, p. 55], the set {Tw : w ∈ W} is an F(q)-basis for HW (q). See also

Humphreys [36, Chapter 7]. The group algebra FW of W and the 0-Hecke algebra

HW (0) are specializations of the Hecke algebra HW (q) at q = 1 and q = 0, respectively.
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The trivial representation of HW (q) is the one dimensional HW (q)-module on which

Ti acts by q for all i; it specializes to the trivial representation of W when q = 1.

For every J ⊆ S, define HW,J(q) to be the parabolic subalgebra of HW (q) generated

by {Tj : sj ∈ J}. Let

σJ :=
∑
w∈WJ

Tw. (2.3)

Then

TwσJ = q`(w)σJ , ∀w ∈WJ .

Thus HW,J(q)σJ is the trivial representation of HW,J(q). The induction of HW,J(q)σJ

to HW (q) gives the parabolic representation HW (q)σJ , which is a left ideal of HW (q)

with F(q)-basis {TwσJ : w ∈W J}.
Using these parabolic representations Mathas [47] defined a chain complex (Ω∗, ∂∗)

which is a q-analogue of (the chain complex of) the Coxeter complex ∆(W ). It has

a rank-selected subcomplex Ω∗(J) for every J ⊆ S, whose homology is vanishing ev-

erywhere except in the top degree |Jc|. The top homology ΠJ of Ω∗(J) is an HW (q)-

submodule of HW (q)σJ with an F(q)-basisξu =
∑

w∈WJc

(−q)`(w)TuwσJ : u ∈W, D(u) = Jc

 . (2.4)

Mathas [47] showed that the decomposition of HW (q)-modules

HW (q) =
⊕
J⊆S

ΠJ (2.5)

holds in the following cases:

• if q = 0 then this is precisely Norton’s decomposition (1.1) of the 0-Hecke algebra

HW (0) (see also §2.5);

• if F = Q and q = 1 then it is the decomposition of the group algebra QW by

Solomon [53];

• it also holds for all semisimple specializations of HW (q).

We will consider HW (q)-actions on multigraded F(q)-vector spaces whose homoge-

neous components are all HW (q)-stable; such a vector space is called a multigraded

HW (q)-module.
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2.5 0-Hecke algebras

Let F be an arbitrary field and let

W := 〈S : s2
i = 1, (sisjsi · · · )mij = (sjsisj · · · )mij , 1 ≤ i 6= j ≤ d〉

be a finite Coxeter group generated by S := {s1, . . . , sd}. The 0-Hecke algebra HW (0)

of W is the specialization of the Hecke algebra HW (q) at q = 0, namely the associative

F-algebra generated by π1, . . . , πd with relations{
π2
i = −π, 1 ≤ i ≤ d,

(πiπjπi · · · )mij = (πjπiπj · · · )mij , 1 ≤ i 6= j ≤ d.

Here πi = Ti|q=0. Let πi := πi + 1. Then π1, . . . , πd form another generating set for

HW (0), with relations{
π2
i = π, 1 ≤ i ≤ d,

(πiπjπi · · · )mij = (πjπiπj · · · )mij , 1 ≤ i 6= j ≤ d.

If an element w ∈ W has a reduced expression w = si1 · · · sik then πw := πi1 · · ·πik
and πw := πi1 · · ·πik are well defined. Both sets {πw : w ∈ W} and {πw : w ∈ W} are

F-bases for HW (0). One can check that πw equals the sum of πu over all u less than or

equal to w in the Bruhat order of W . In particular, for all J ⊆ S,

πw0(J) =
∑
u∈WJ

πu

is the specialization at q = 0 of the element σJ in HW (q) defined in (2.3).

Norton [49] decomposed the 0-Hecke algebra HW (0) into a direct sum of pairwise

non-isomorphic indecomposable (left) HW (0)-submodules

HW (0) =
⊕
J⊆S

PJ .

Each direct summand PJ := HW (0) · πw0(J)πw0(Jc) has an F-basis{
πwπw0(Jc) : w ∈ [w0(J), w1(J)]

}
.

Its radical rad PJ is defined as the intersection of all maximal Hn(0)-submodules in

general, and turns out to be the unique maximal Hn(0)-submodule spanned by

{πwπw0(J) : w ∈ (w0(J), w1(J)]}
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in this case. Although PJ itself is not necessarily simple, its top CJ := PJ/ rad PJ is a

one-dimensional simple Hn(0)-module with the action of Hn(0) given by

πi =

{
−1, if i ∈ J,
0, if i /∈ J.

It follows from general representation theory of associative algebras (see e.g. [5, §I.5])

that {PJ : J ⊆ S} is a complete list of non-isomorphic projective indecomposable

HW (0)-modules and {CJ : J ⊆ S} is a complete list of non-isomorphic simple HW (0)-

modules.

The Hecke algebra of the symmetric group Sn is denoted by Hn(q) and the 0-Hecke

algebra of Sn is denoted by Hn(0). For every composition α of n, we denote by Cα and

Pα the simple and projective indecomposable Hn(0)-modules indexed by D(α) ⊆ [n−1].

One can realize Pα in a combinatorial way [31, 39] using ribbon tableaux. We know

that the ribbon tableaux of shape α are in bijection with the descent class of α, hence

in bijection with the basis {πwπw0(αc) : D(w) = D(α)} of Pα. The Hn(0)-action on Pα

agrees with the following Hn(0)-action on these ribbon tableaux:

πiτ =


−τ, if i is in a higher row of τ than i+ 1,

0, if i is in the same row of τ as i+ 1,

siτ, if i is in a lower row of τ than i+ 1,

(2.6)

where τ is a ribbon tableau of shape α and siτ is obtained from τ by swapping i and

i + 1. This action gives rise to a directed version of the Hasse diagram of the interval

[w0(α), w1(α)] under the weak order. The top tableau in this diagram corresponds to

Cα = top (Pα), and the bottom tableau spans the socle soc (Pα) ∼= C←−α of Pα, which
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is the unique minimal submodule of Pα. An example is given below for α = (1, 2, 1).

3
1 4
2 π1=π3=−1
ff

π2 ��

2
1 4
3 π2=−1
ff

π1��
π3 ��

1
2 4
3π1=π2=−1
88

π3

��

2
1 3
4 π2=π3=−1
ff

π1

��
1

2 3
4 π1=π3=−1,π2=0
ff

2.6 Quasisymmetric functions and noncommutative sym-

metric functions

Let Z[[X]] be the ring of formal power series over Z in commutative variables x1, x2, . . ..

The Hopf algebra QSym of quasisymmetric functions is a free Z-module with basis given

by the monomial quasisymmetric functions

Mα :=
∑

i1>···>i`≥1

xα1
i1
· · ·xα`i`

for all compositions α = (α1, . . . , α`). By definition there is an inclusion QSym ⊂ Z[[X]]

of algebras. Another free Z-basis consists of the fundamental quasisymmetric functions

Fα :=
∑
α4β

Mβ =
∑

i1≥···≥in≥1
j∈D(α)⇒ij>ij+1

xi1 · · ·xin

for all compositions α, where n = |α|, and α4β means that α and β are both composi-

tions of n with D(α) ⊆ D(β), or in other words, α is refined by β. Since α 7→ D(α) is

a bijection, we sometimes write FI := Fα if I = D(α) ⊆ [n− 1] and n is clear from the

context.

The reader might notice that the above definition for Mα and Fα is slightly different

from the standard one, as the inequalities of the subscripts are reversed. This difference
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is certainly not essential, and the definition given here has the advantage that the prin-

cipal specialization Fα(1, x, x2, . . .) involves maj(α) :=
∑

i∈D(α) i rather than maj(←−α ),

where ←−α := (α`, . . . , α1) if α = (α1, . . . , α`). We will use this in §4.2.6.

The product of QSym is the usual product of formal power series in commutative

variables x1, x2, . . ., and the coproduct for QSym is defined as ∆f(X) := f(X + Y )

for all f ∈ QSym, where X + Y := {x0, x1, . . . , y0, y1, . . .} is a set of totally ordered

commutative variables.

Let Z〈X〉 be the free associative Z-algebra in noncommutative variables x1,x2, . . ..

The Hopf algebra NSym is a subalgebra of Z〈X〉, defined as the free associative algebra

Z〈h1,h2, . . .〉 where

hk :=
∑

1≤i1≤···≤ik

xi1 · · ·xik .

It has a Z-basis of the complete homogeneous noncommutative symmetric functions

hα := hα1 · · ·hα` for all compositions α = (α1, . . . , α`). Another free Z-basis consists of

the noncommutative ribbon Schur functions

sα :=
∑
β4α

(−1)`(α)−`(β)hβ

for all compositions α. If α = (α1, . . . , α`) and β = (β1, . . . , βk) are two compositions

then

sαsβ = sαβ + sαBβ (2.7)

where

αβ := (α1, . . . , α`, β1, . . . , βk),

αB β := (α1, . . . , α`−1, α` + β1, β2, . . . , βk).

The coproduct of NSym is defined by ∆hk =
∑k

i=0 hi ⊗ hk−i, where h0 := 1.

The two Hopf algebras QSym and NSym are dual to each other via the pairing

〈Mα,hβ〉 = 〈Fα, sβ〉 := δαβ, ∀α, β.

They are related to the self-dual Hopf algebra Sym, the ring of symmetric functions,

which is free Z-module with a basis of Schur functions sλ for all partitions λ of n. The

product and coproduct of Sym are determined by

sµsν =
∑
λ

cλµνsλ,
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∆(sλ) =
∑
µ,ν

cλµνsµ ⊗ sν ,

where the coefficients cλµν are positive integers called the Littlewood-Richardson coeffi-

cients.

The definition of the Schur function sλ is a special case of the skew Schur function

sλ/µ :=
∑

τ∈SSYT(λ/µ)

xτ

of a skew shape λ/µ, where xτ := xd11 x
d2
2 · · · if d1, d2, . . . have the multiplicities of

1, 2, . . . in τ . One can take commutative images of elements in Z〈X〉 by sending xi to

xi for all i; this defines the forgetful map Z〈X〉 → Z[[X]]. The commutative image of a

noncommutative ribbon Schur function sα is nothing but the ribbon Schur function sα.

This gives a surjection NSym� Sym of Hopf algebras.

There is also a free Z-basis for Sym consisting of the monomial symmetric functions

mλ :=
∑

λ(α)=λ

Mα

for all partitions λ. Here λ(α) is the unique partition obtained from the composition α

by rearranging its parts. This gives an inclusion Sym ↪→ QSym of Hopf algebras.

The relations between Sym, QSym, and NSym are summarized below.

Z〈X〉 χ
// Z[[X]]

NSym
?�

OO

oo dual // QSym
?�

OO

Sym
?�

OO

'' ''
χ

We will use the following expansion of a Schur function indexed by a partition λ ` n:

sλ =
∑
µ`n

Kλµmµ. (2.8)

Here Kλµ is the Kostka number which counts all semistandard Young tableaux of shape

λ and type µ.
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2.7 Characteristic maps

Now we recall the classic correspondence between (complex) Sn-representations and

symmetric functions, and a similar correspondence by Krob and Thibon [39] for Hn(0)-

representations (over any field F). See also Bergeron and Li [7].

Let A be an F-algebra and let C be a category of some finitely generated A-modules.

The Grothendieck group of C is defined as the abelian group F/R, where F is the free

abelian group on the isomorphism classes [M ] of the A-modules M in C, and R is the

subgroup of F generated by the elements [M ] − [L] − [N ] corresponding to all exact

sequences 0→ L→M → N → 0 of A-modules in C. Note that if A is semisimple, or if

L,M,N are all projective A-modules, then 0→ L→M → N → 0 implies M ∼= L⊕N .

We often identify an A-module in C with the corresponding element in the Grothendieck

group of C.
Denote by G0(Sn) the Grothendieck group of the category of all finitely generated

CSn-modules. The simple CSn-modules Sλ are indexed by partitions λ of n, and every

finitely generated CSn-module is a direct sum of simple Sn-modules. Thus G0(Sn) is

a free abelian group on the isomorphism classes [Sλ] for all partitions λ of n. The tower

of groups S• : S0 ↪→ S1 ↪→ S2 ↪→ · · · has a Grothendieck group

G0(S•) :=
⊕
n≥0

G0(Sn)

Using the natural inclusion Sm ×Sn ↪→ Sm+n, one defines the product of Sµ and Sν

as the induction of Sµ⊗ Sν from Sm×Sn to Sm+n for all partitions µ ` m and ν ` n,

and the coproduct of Sλ as the sum of its restriction to Si ×Sn−i for i = 0, 1, . . . , n,

for all partitions λ ` n. This gives G0(S•) a self-dual Hopf algebra structure.

The Frobenius characteristic map ch is defined by sending a simple Sλ to the Schur

function sλ, giving a Hopf algebra isomorphism between the Grothendieck group G0(S•)

and the Hopf algebra Sym of symmetric functions.

The Grothendieck group of the category of all finitely generated Hn(0)-modules is

denoted by G0(Hn(0)), and the Grothendieck group of the category of finitely generated

projective Hn(0)-modules is denoted by K0(Hn(0)). By the result of Norton [49], one

has

G0(Hn(0)) =
⊕
α|=n

Z · [Cα], K0(Hn(0)) =
⊕
α|=n

Z · [Pα].
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The tower of algebras H•(0) : H0(0) ↪→ H1(0) ↪→ H2(0) ↪→ · · · has two Grothendieck

groups

G0(H•(0)) :=
⊕
n≥0

G0(Hn(0)), K0(H•(0)) :=
⊕
n≥0

K0(Hn(0)).

These two Grothendieck groups are dual Hopf algebras with product and coproduct

again given by induction and restriction of representations along the natural inclusions

Hm(0)⊗Hn(0) ↪→ Hm+n(0) of algebras. Krob and Thibon [39] introduced Hopf algebra

isomorphisms

Ch : G0(H•(0)) ∼= QSym, ch : K0(H•(0)) ∼= NSym

which we review next.

Let M = M0 ⊇ M1 ⊇ · · · ⊇ Mk ⊇ Mk+1 = 0 be a composition series of Hn(0)-

modules with simple factors Mi/Mi+1
∼= Cα(i) for i = 0, 1, . . . , k. Then the quasisym-

metric characteristic of M is

Ch(M) := Fα(0) + · · ·+ Fα(k) .

This is well defined by the Jordan-Hölder theorem. The noncommutative characteristic

of a projective Hn(0)-module M ∼= Pα(1) ⊕ · · · ⊕Pα(k) is

ch(M) := sα(1) + · · ·+ sα(k) .

Krob and Thibon [39] also showed that Ch(Pα) = sα is the ribbon Schur function,

which is the commutative image of ch(Pα) = sα. Thus Ch(M) is symmetric if M is a

finitely generated projective Hn(0)-module, but not vice versa: for instance, C12 ⊕C21

is nonprojective but Ch(C12 ⊕C21) = s21 ∈ Sym.

2.8 Cyclic Hn(0)-modules and the q-characteristic map

Let Hn(0)(`) be the F-span of {πw : `(w) ≥ `}. For a cyclic Hn(0)-module N = Hn(0)v,

there is a length filtrationN (0) ⊇ N (1) ⊇ · · · ofHn(0)-modules, whereN (`) := Hn(0)(`)v.

Krob and Thibon [39] defined the length-graded quasisymmetric characteristic of N as

Chq(N) :=
∑
`≥0

q`Ch(N (`)/N (`+1)).
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For example (c.f. Lemma 4.2.13), if α is a composition of n, then the cyclic Hn(0)-

module Hn(0)πw0(αc) has length-graded quasisymmetric characteristic

Chq(Hn(0)πw0(αc)) =
∑
w∈Sα

qinv(w)FD(w−1).

In particular, taking α = 1n one obtains

Chq(Hn(0)) =
∑
w∈Sn

qinv(w)FD(w−1)

=
∑
α|=n

rα(q)Fα.

and then setting q = 1 one has

Ch(Hn(0)) =
∑
α|=n

rαFα.

We often consider (multi)graded Hn(0)-modules M with countably many homoge-

neous components that are all finite dimensional. Since each component of M has a well-

defined quasisymmetric characteristic and a (multi)grading, we obtain a (multi)graded

quasisymmetric characteristic of M , which can be combined with the aforementioned

length-graded quasisymmetric characteristic if in addition every homogeneous compo-

nent is cyclic. If M is projective then one has a (multi)graded noncommutative char-

acteristic of M . The (multi)graded Frobenius characteristic is defined in the same way

for (multi)graded CSn-modules.



Chapter 3

0-Hecke algebra actions on

coinvariants and flags

In this chapter we give interpretations of various ribbon numbers by studying 0-Hecke

algebra actions on coinvariants and flags.

3.1 Coinvariant algebra of Hn(0)

The symmetric group Sn acts on the polynomial ring F[X] := F[x1, . . . , xn] over an

arbitrary field F by permuting the variables x1, . . . , xn, and hence acts on the coinvariant

algebra F[X]/(F[X]Sn+ ) of Sn, where (F[X]Sn+ ) is the ideal generated by symmetric

polynomials of positive degree. We often identify the polynomials in F[X] with their

images in the coinvariant algebra of Sn in this section.

The Hn(0)-action on the polynomial ring F[X] is via the Demazure operators

πi(f) :=
xif − xi+1si(f)

xi − xi+1
, ∀f ∈ F[X], 1 ≤ i ≤ n− 1.

It follows from this definition that

• deg(πif) = deg(f) for all homogeneous polynomials f ∈ F[X],

• πif = f if and only if sif = f for all f ∈ F[X],

• πi(fg) = fπi(g) for all f, g ∈ F[X] satisfying πif = f .

26
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Thus this Hn(0)-action preserves the grading of F[X], has the invariant algebra

F[X]Hn(0) := {f ∈ F[X] : πif = f, i = 1, . . . , n− 1} = F[X]Sn

equal to the coinvariant algebra of Sn, and is F[X]Sn-linear. Then one has a grading-

preserving Hn(0)-action on the coinvariant algebra of Hn(0), which is defined as

F[X]/(f ∈ F[X] : deg f > 0, πif = f, 1 ≤ i ≤ n− 1)

and coincides with the coinvariant algebra F[X]/(F[X]Sn+ ) of Sn.

To study this Hn(0)-action on its coinvariant algebra, we consider certain Demazure

atoms which behave nicely under the Hn(0)-action. Specifically, we consider the poly-

nomials

πwxD(w), ∀w ∈ Sn. (3.1)

Here

xI :=
∏
i∈I

x1 · · ·xi

for any I ⊆ [n− 1]. See Mason [46] for more information on the Demazure atoms.

We will see in Lemma 3.1.1 that the Demazure atoms mentioned above are closely

related to the descent monomials

wxD(w) =
∏

i∈D(w)

xw(1) · · ·xw(i), ∀w ∈ Sn.

It is well-known that the descent monomials form a basis for the coinvariant algebra of

Sn; see e.g. Garsia [24] and Steinberg [57]. Allen [3] provided an elementary proof for

this result, which we will adapt to the Demazure atoms πwxD(w). Thus we first recall

Allen’s proof below.

Recall from §1.1 that a weak composition is a finite sequence of nonnegative integers.

A partition here is a finite decreasing sequence of nonnegative integers, with zeros

ignored sometimes. Every monomial in F[X] can be written as xd = xd11 · · ·xdnn where

d = (d1, . . . , dn) is a weak composition. Denote by λ(d) the unique partition obtained

from rearranging the weak composition d. Given two monomials xd and xe, write

xd ≺ xe or d ≺ e if λ(d) <L λ(e), and write xd <ts x
e if (i) λ(d) <L λ(e) or (ii)

λ(d) = λ(e) and d <L e, where “<L” is the lexicographic order.
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Given a weak composition d = (d1, . . . , dn), we have a permutation σ(d) ∈ Sn

obtained by labelling d1, . . . , dn from the largest to the smallest, breaking ties from left

to right. Construct a weak composition γ(d) from this labelling as follows. First replace

the largest label with 0, and recursively, if the label t has been replaced with s, then

replace t− 1 with s if it is to the left of t, or with s+ 1 otherwise. Let µ(d) = d− γ(d)

be the component-wise difference. For example,

d = (3, 1, 3, 0, 2, 0), σ(d) = (1, 4, 2, 5, 3, 6),

γ(d) = (1, 0, 1, 0, 1, 0), µ(d) = (2, 1, 2, 0, 1, 0).

The decomposition d = γ(d) + µ(d) is the usual P -partition encoding of d (see e.g.

Stanley [55]), and xγ(d) is the descent monomial of σ(d)−1. E.E. Allen [3, Proposition 2.1]

showed that wµ(d) + γ(d) <ts d for all w ∈ Sn unless w = 1, and thus

mµ(d) · xγ(d) = xd +
∑

xe<tsxd

cex
e, ce ∈ Z, (3.2)

where mµ(d) is the monomial symmetric function corresponding to µ(d), i.e. the sum of

the monomials in the Sn-orbit of xµ(d). It follows that{
mµ · wxD(w) : µ = (µ1 ≥ · · · ≥ µn ≥ 0), w ∈ Sn

}
is triangularly related to the set of all monomials xd, and thus an F-basis for F[X].

Therefore the descent monomials form an F[X]Sn-basis for F[X] and give an F-basis for

F[X]/(F[X]Sn+ ).

Now we investigate the relation between our Demazure atoms and the descent mono-

mials. First observe that if m is a monomial not containing xi and xi+1, then

πi(mx
a
i x

b
i+1) =


m(xa−1

i xb+1
i+1 + xa−2

i xb+2
i+1 · · ·+ xbix

a
i+1), if a > b,

0, if a = b,

−m(xai x
b
i+1 − x

a+1
i xb−1

i+1 − · · · − x
b−1
i xa+1

i+1 ), if a < b.

(3.3)

Lemma 3.1.1. Suppose that α is a composition of n and w is a permutation in Sn

with D(w) ⊆ D(α). Then

πwxD(α) = wxD(α) +
∑

xd≺xD(α)

cdx
d, cd ∈ Z.

Moreover, wxD(α) is a descent monomial if and only if D(w) = D(α).
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Example 3.1.2. Let us look at some examples before proving this lemma.

First let n = 3. If α = 3 then xD(α) = 1. If α = 12 then

xD(α) = x1
π1−→ x2

π2−→ x3.

If α = 21 then

xD(α) = x1x2
π2−→ x1x3

π1−→ x2x3.

If α = 111 then

x1x
2
2

π2 // x1x
2
3 + x1x2x3

π1

&&

xD(α) = x2
1x2

π1

99

π2
%%

x2x
2
3

x2
1x3 π1

// x2
2x3 + x1x2x3

π2

88

The leading terms (underlined) of 1, π1(x1), π2π1(x1), π2(x1x2), π1π2(x1x2), and

π1π2π1(x2
1x2) are precisely the descent monomials 1, x2, x3, x1x3, x2x3, and x2x

2
3

of the six permutations in S3.

When n = 4 and α = 121, one has xD(α) = x2
1x2x3, and the five Demazure atoms

πwxD(α) with D(w) = D(α) are given below, whose leading terms (underlined) are the

descent monomials of the corresponding permutations w.

x1x
2
2x4

π2

��

x1x
2
3x4 + x1x2x3x4

π1xx π3 &&

x2x
2
3x4

π3

&&

x1x3x
2
4

π1

xx

x2x3x
2
4

2·14·3

s2

��

3·14·2

s1
||

s3
""

3·24·1
s3

""

4·13·2
s1

||

4·23·1

Proof. We prove the first assertion by induction on `(w). It is trivial when `(w) = 0.

Assume w = sju for some j ∈ [n − 1] and some u ∈ Sn with `(u) < `(w). Since
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D(u) ⊆ D(w) ⊆ D(α), one has

πuxD(α) = uxD(α) +
∑

xd≺xD(α)

cdx
d, cd ∈ Z. (3.4)

It follows from (3.3) that

πj(x
d) =

∑
xe�xd

aex
e, ae ∈ Z. (3.5)

Observe that the degree of xk in uxD(α) is

rk = #{i ∈ D(α) : u−1(k) ≤ i}.

It follows from `(sju) > `(u) that u−1(j) < u−1(j + 1) and thus rj ≥ rj+1. Since

(sju)−1(j + 1) < (sju)−1(j), there exists an i ∈ D(sju) ⊆ D(α) such that

u−1(j) = (sju)−1(j + 1) ≤ i < (sju)−1(j) = u−1(j + 1).

Thus rj > rj+1. It follows from (3.3) that

πj(uxD(α)) = sjuxD(α) +
∑

xe≺xD(α)

bex
e, be ∈ Z. (3.6)

Combining (3.4), (3.5), and (3.6) one obtains the first assertion.

If D(w) = D(α) then wxD(α) is the descent monomial of w. Conversely, assume

wxD(α) equals the descent monomial of some u ∈W , i.e.∏
i∈D(α)

xw(1) · · ·xw(i) =
∏

j∈D(u)

xu(1) · · ·xu(j).

Let D(α) = {i1, . . . , ik} and D(u) = {j1, . . . , jt}. Comparing the variables absent on

both sides of the above equality, one sees that ik = jt and w(i) = u(i) for i = ik+1, . . . , n.

Repeating this argument for the variables appearing exactly m times, m = 1, 2, . . . , one

sees that D(α) = D(u) and w = u.

Remark 3.1.3. Using the combinatorial formula by Mason [46] for the Demazure atoms,

one can check that πw0(α)xD(α) and πw1(α)xD(α) are precisely the descent monomials of

w0(α) and w1(α).
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Lemma 3.1.4. For any weak composition d = (d1, . . . , dn), let σ = σ(d), γ = γ(d),

µ = µ(d). If cβ ∈ Z for all β ≺ γ then

mµ ·

xγ +
∑
β≺γ

cβx
β

 = xd +
∑

xe<tsxd

bex
e, be ∈ Z.

Proof. Since we already have (3.2), it suffices to show that wµ+ β ≺ d for all permuta-

tions w in Sn and all β ≺ γ. Given a weak composition α, let αi be its i-th part. Since

σµ and σγ are both weakly decreasing, one has λ(µ)i+λ(γ)i = λ(d)i for all i = 1, . . . , n.

Since β ≺ γ, there exists a unique integer k such that λ(β)i = λ(γ)i for i = 1, . . . , k− 1,

and λ(β)k < λ(γ)k. Then for all i ∈ [k − 1],

λ(wµ+ β)i ≤ λ(µ)i + λ(β)i

= λ(µ)i + λ(γ)i

= λ(d)i

and

λ(wµ+ β)k ≤ λ(µ)k + λ(β)k

< λ(µ)k + λ(γ)k

= λ(d)k.

Therefore wµ+ β ≺ d and we are done.

Lemma 3.1.5. The coinvariant algebra F[X]/(F[X]Sn+ ) has an F-basis given by the set

{fw : w ∈ Sn}, if

fw = wxD(w) +
∑

xd≺xD(α)

cdx
d, cd ∈ F, ∀w ∈ Sn.

Proof. Given a weak composition d = (d1, . . . , dn), let γ = γ(d), µ = µ(d), and σ = σ(d).

Then xγ is the descent monomial of σ−1. By Lemma 3.1.4,

mµfσ−1 = xd +
∑

xe<tsxd

bex
e.

Hence {mµfw : µ = (µ1 ≥ · · · ≥ µn ≥ 0), w ∈ Sn} is triangularly related to the set

of all monomials xd, and thus an F-basis for F[X]. It follows that {fw : w ∈ Sn} is an

F[X]Sn-basis for F[X] and gives an F-basis for F[X]/(F[X]Sn+ ).
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Theorem 3.1.6. The coinvariant algebra F[X]/(F[X]Sn+ ) has an F-basis given by the

set
{
πwxD(w) : w ∈ Sn

}
and an Hn(0)-module decomposition

F[X]/(F[X]Sn+ ) =
⊕
α|=n

Hn(0) · πw0(α)xD(α)

where Hn(0)·πw0(α)xD(α) has an F-basis
{
πwxD(α) : w ∈ [w0(α), w1(α)]

}
, and is isomor-

phic to the projective indecomposable Hn(0)-module Pα, for all α |= n. Consequently,

F[X]/(F[X]Sn+ ) is isomorphic to the regular representation of Hn(0).

Proof. By Lemma 3.1.1 and Lemma 3.1.5, the set {πwxD(w) : w ∈ Sn} gives a basis for

F[X]/(F[X]Sn+ ). For any permutation u in Sn, one sees from the relations of πi that

πuπw0(α) = ±πw for some w ≥ w0(α) in the left weak order, which implies D(w) ⊇ D(α).

If there exists j ∈ D(w) \D(α), then

πwxD(α) = πwsjπjxD(α) = 0.

Hence Hn(0) · πw0(α)xD(α) is spanned by {πwxD(α) : w ∈ [w0(α), w1(α)]}, which must

be an F-basis since it is a subset of a linearly independent set. Sending πwxD(α) to

πwπw0(αc) for all w ∈ [w0(α), w1(α)] gives an isomorphism between Hn(0) · πw0(α)xD(α)

and Pα.

Remark 3.1.7. (i) This theorem and its proof are valid when F is replaced with Z.

(ii) By Remark 3.1.3, the cyclic generators πw0(α)xD(α) for the indecomposable sum-

mands of the coinvariant algebra are precisely the descent monomials w0(α)xD(α).

As a graded Sn-mdoule, the coinvariant algebra C[X]/(C[X]Sn+ ) has graded Frobe-

nius characteristic given by the following result, which is due to G. Lusztig (unpublished)

and independently to R. Stanley [54, Proposition 4.11].

Theorem 3.1.8 (Lusztig-Stanley). The graded Frobenius characteristic of the coinvari-

ant algebra of Sn is

cht

(
C[X]/(C[X]Sn+ )

)
=
∑
λ`n

∑
τ∈SYT(λ)

tmaj(τ)sλ
(∗)

=== H̃1n(x; t)

where t keeps track of the usual polynomial degree grading, and H̃1n(x; t) is the modified

Hall-Littlewood symmetric function of the partition 1n.
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Remark 3.1.9. The equality (∗) is a special case of Theorem 3.4.1. One can also see it

by using the charge formula of Lascoux and Schützenberger [43].

We have an analogous result for the Hn(0)-action on the coinvariant algebra.

Corollary 3.1.10. (i) The bigraded characteristic of the coinvariant algebra is

Chq,t

(
F[X]/(F[X]Sn+ )

)
=
∑
w∈Sn

tmaj(w)qinv(w)FD(w−1)

where q keeps track of the grading from the length filtration of the regular representation

of Hn(0), and t keeps track of the polynomial degree grading.

(ii) The degree graded quasisymmetric characteristic of the coinvariant algebra is

Cht

(
F[X]/(F[X]Sn+ )

)
=
∑
α|=n

rα(t)Fα =
∑
α|=n

∑
τ∈SYT(α)

tmaj(τ)Fα.

(iii) The quasisymmetric function in (ii) is actually symmetric and equals

∑
λ`n

[
n

λ

]
t

mλ =
∑
λ`n

∑
τ∈SYT(λ)

tmaj(τ)sλ =
∑
λ`n

tn(λ) [n]!t∏
u∈λ[hu]t

sλ = H̃1n(x; t)

where hu is the hook length of the box u in the Young diagram of the partition λ and

n(λ) := λ2 + 2λ3 + 3λ4 + · · · if λ = (λ1 ≥ λ2 ≥ · · · ) (c.f. Stanley [56, §7.21]).

Proof. Given a composition α of n, the Hn(0)-module Hn(0) ·πw0(α)xD(α) is isomorphic

to projective indecomposable Pα, with isomorphism given by the bijection between their

bases:

πwxD(α) ↔ πwπw0(αc), ∀w ∈ [w0(α), w1(α)].

For any w ∈ [w0(α), w1(α)], the element πwxD(α) has homogeneous degree maj(w), and

πwπw0(αc) =
∑
u∈Sα

πwu

is the sum of πw and other elements of lager lengths. Hence (i) follows from Theo-

rem 3.1.6.

It follows from (i) that the degree graded multiplicity of a simple Hn(0)-module Cα

in the coinvariant algebra is

rα(t) =
∑
w∈Sn:

D(w−1)=D(α)

tmaj(w) =
∑
w∈Sn:

D(w)=D(α)

tmaj(w−1) =
∑

τ∈SYT(α)

tmaj(τ).
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Then

Cht

(
F[X]/(F[X]Sn+ )

)
=
∑
α|=n

rα(t)Fα =
∑
α|=n

[
n

α

]
t

Mα =
∑
λ`n

[
n

λ

]
t

mλ ∈ Sym[t].

Given a partition µ of n, we have[
n

µ

]
t

=
∑
w∈Sn:

D(w)⊆D(µ)

tmaj(w−1) =
∑

w∈S(µ)

tmaj(w−1)

where S(µ) is the set of all permutations of the multiset of type µ. For example,

w = 3561247 corresponds to(
1 1 1 2 2 3 3

3 5 6 1 2 4 7

)
∈ S(332).

Applying RSK to w ∈ S(µ) gives a pair (P,Q) of Young tableaux P and Q of the same

shape (say λ), where P is standard, and Q is semistandard of type µ. It is well-known

that the descents of w−1 are precisely the descents of P ; see e.g. Schützenberger [51].

Hence

Cht

(
F[X]/(F[X]Sn+ )

)
=

∑
λ`n

∑
P∈SYT(λ)

tmaj(P )
∑
µ`n

Kλµmµ

=
∑
λ`n

tn(λ) [n]!t∏
u∈λ[hu]t

sλ.

Here the last equality follows from the the q-hook length formula (see e.g. Stanley [56,

Proposition 7.21.5]) and (2.8).

3.2 Coinvariant algebra of Weyl groups

The results in the previous section can be generalized to the action of the 0-Hecke

algebra of a Weyl group W on the Laurent ring F[Λ] of the weight lattice Λ of W . The

readers are referred to Humphreys [36] for details on Weyl groups and weight theory.

Demazure’s character formula [16] expresses the character of the highest weight

modules over a semisimple Lie algebra using the Demazure operators πi on the group

ring F[Λ] of the weight lattice Λ. Write eλ for the element in F[Λ] corresponding to the
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weight λ ∈ Λ. Suppose that γ1, . . . , γr are the simple roots1 , s1, . . . , sr are the simple

reflections, and λ1, . . . , λr are the fundamental weights. Then

F[Λ] = F[z1, . . . , zr, z
−1
1 , . . . , z−1

r ]

where zi = eλi . The Demazure operators are defined by

πi =
f − e−γisi(f)

1− e−γi
, ∀f ∈ F[Λ].

It follows that

πi(e
λ) =


eλ + eλ−γi + · · ·+ esiλ, if 〈λ, γi〉 ≥ 0,

0, if 〈λ, γi〉 = −1,

−eλ+γi − · · · − esiλ−γi , if 〈λ, γi〉 < −1.

(3.7)

Here 〈λ, γi〉 = 2(λ, γi)/(γi, γi) with (−,−) being the standard inner product. See, for

example, Kumar [41]. The Demazure operators satisfy siπi = πi, π
2
i = πi, and the

braid relations [16, §5.5] πiπi+1πi = πi+1πiπi+1 and πiπj = πjπi if |i − j| > 1. Hence

the 0-Hecke algebra HW (0) of the Weyl group W acts on F[Λ] by πi, or equivalently by

πi := πi− 1. It is clear that πif = f if and only if sif = sif for all i ∈ [r] and f ∈ F[Λ].

Using the Stanley-Reisner ring of the Coxeter complex of W (defined in §5.1), Garsia

and Stanton [27] showed that

F[Λ]W = F[a1, . . . , ar]

where

ai =
∑

w∈W/Wic

ewλi , (ic = [r] \ {i})

and F[Λ] has a free basis over F[Λ]W , which consists of the descent monomials

zw :=
∏

i∈D(w)

ewλi , ∀w ∈W.

See also Steinberg [57]. If we write λI =
∑

i∈I λi for all I ⊆ [r], then zw = weλD(w) .

The basis {zw : w ∈W} induces an F-basis for F[Λ]/(a1, . . . , ar). The HW (0)-action on

F[Λ] is F[Λ]W -linear, hence inducing an HW (0)-action on F[Λ]/(a1, . . . , ar).

1 We use γ to denote roots because α is used for compositions.
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We order the weights by λ ≤ µ if µ − λ is a nonnegative linear combination of

simple roots. Every monomial is F[Λ] is of the form m = eλ for some weight λ. By

Humphreys [36], there exists a unique dominant weight µ such that µ = wλ for some w

in W , and we have λ ≤ µ. Write [m]+ = [λ]+ := µ and call this dominant weight µ the

shape of the monomial m or the weight λ.

For every monomial m of shape λ, Garsia and Stanton [27, proof of Theorem 9.4]

showed that

m−
∑

d∈Zr, w∈W :
λd+λD(w)=λ

cd,wa
d1
1 · · · a

dr
r zw (3.8)

is a linear combination of monomials whose shape is strictly less than λ, where cd,w ∈ Z
and λd = d1λ1 + · · ·+drλr. It follows by induction that the descent monomials zw form

an F[Λ]W -basis for F[Λ].

Lemma 3.2.1. Suppose that γ is a simple root and λ is a weight such that 〈λ, γ〉 ≥ 0.

If 0 ≤ k ≤ 〈λ, γ〉 then [λ − kγ]+ ≤ [λ]+, and the equality holds if and only if k = 0 or

〈λ, γ〉.

Proof. Let µ = λ − kγ. If k = 0 or 〈λ, γ〉, then µ = λ or sγλ, and thus [µ]+ = [λ]+ in

either case. Assume 0 < k < 〈λ, γ〉 below, and let wλ and uµ be dominant for some w

and u in W .

If uγ > 0 then uµ = uw−1(wλ)− kuγ < uw−1(wλ) ≤ wλ.

If uγ < 0 then

uµ = usγ · sγλ− kuγ

= usγ(λ− 〈λ, γ〉γ)− kuγ

= usγλ+ (〈λ, γ〉 − k)uγ

< usγλ ≤ wλ.

This completes the proof.

Lemma 3.2.2. Given a composition α of r+1, let λα = λD(α) and zα = eλα. If w ∈W
has D(w) ⊆ D(α), then

πwzα = ewλα +
∑

[λ]+<λα

cλe
λ, cλ ∈ Z.
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Moreover, ewλα is a descent monomial if and only if D(w) = D(α).

Proof. We prove the first assertion by induction on `(w). If `(w) = 0 then we are

done; otherwise w = sju for some j ∈ [r] and for some u with `(u) < `(w). Since

D(u) ⊆ D(w) ⊆ D(α), one has

πuzα = euλα +
∑

[λ]+<λα

cλe
λ, cλ ∈ Z.

Applying Lemma 3.2.1 to (3.7) (if the simple root γj satisfies 〈λ, γj〉 ≤ 0 then 〈sjλ, γj〉 ≥
0), one sees that

πj(e
λ) =

∑
[µ]+≤[λ]+

aµe
µ, aµ ∈ Z.

If we can show 〈uλα, γj〉 > 0, then applying Lemma 3.2.1 to the first case of (3.7) one

has

πje
uλα = esjuλα +

∑
[µ]+<λα

bµe
µ, bµ ∈ Z.

Combining these equations one obtains

πwzα = ewλα +
∑

[µ]+<λα

bµe
µ +

∑
[λ]+<λα

cλ
∑

[µ]+≤[λ]+

aµe
µ,

which gives the desired result.

Now we prove 〈uλα, γj〉 > 0. In fact, since `(sju) > `(u), one has u−1(γj) > 0, i.e.

u−1(γj) =
r∑
i=1

miγi

for some nonnegative integers mi. Applying sju to both sides one gets

0 > −γj =

r∑
i=1

misju(γi).

By the hypothesis D(sju) ⊆ D(α), if i /∈ D(α) then sju(γi) > 0. This forces mi > 0 for

some i ∈ D(α), and thus

〈uλα, γj〉 = 〈λα, u−1γj〉 =
∑

i∈D(α)

mi > 0.

Finally we consider when ewλα is a descent monomial. If D(w) = D(α) then it is

just the descent monomial of w. Conversely, if it is a descent monomial of some u ∈W
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then wλα = uλD(u). Since λα and λD(u) are both in the fundamental Weyl chamber,

the above equality implies that λα = λD(u) and u−1w is a product of simple reflections

which all fix λα ([36, Lemma 10.3B]), i.e.

w = usj1 · · · sjk , j1, . . . , jk /∈ D(u) = D(α).

Since D(w) ⊆ D(α) = D(u), none of sj1 , . . . , sjk is a descent of w, and thus it follows

from the deletion property of W that w is a subword of some reduced expression of u,

i.e. w ≤ u in Bruhat order. Similarly, it follows from u = wsjk · · · sj1 that u ≤ w in

Bruhat order. Thus u = w.

Theorem 3.2.3. The coinvariant algebra F[Λ]/(a1, . . . , ar) has an F-basis given by{
πwe

λD(w) : w ∈W
}

and an HW (0)-module decomposition

F[Λ]/(a1, . . . , ar) =
⊕

α|=r+1

HW (0) · πw0(α)zα

where each direct summand HW (0) · πw0(α)zα has an F-basis

{πwzα : w ∈ [w0(α), w1(α)]}

and is isomorphic to the projective indecomposable HW (0)-module Pα. Consequently,

F[Λ]/(a1, . . . , ar) is isomorphic to the regular representation of HW (0).

Proof. By Lemma 3.2.2, if one replaces the descent monomial zw with the Demazure

atom πwe
λD(w) in (3.8), the extra terms produced are of the form

cd,wa
d1
1 · · · a

dr
r e

µ

where d = (d1, . . . , dr) and µ are weak compositions, and w is an element inW , satisfying

λd + λD(w) = λ and [µ] < λD(w). By the definition of a1, . . . , ar, one expands each term

above as a linear combination of the monomials

ed1w1λ1 · · · edrwrλreµ, wi ∈W/Wic .

There exists w ∈W such that

[µ+ d1w1λ1 + · · ·+ drwrλr]

= w(µ+ d1w1λ1 + · · ·+ drwrλr)

≤ [µ] + d1λ1 + · · ·+ drλr

< λD(w) + λd = λ.
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By induction on the shapes of the monomials, one shows that the Demazure atoms

πwλD(w) for all w in W form an F[Λ]W -basis for F[Λ], giving an F-basis for the coin-

variant algebra F[Λ]/(a1, . . . , ar).

Let α |= r + 1. For any u in W , using π2
i = −πi one shows by induction that

πuπw0(α) = πw for some w ≥ w0(α) in the (left) weak order, which implies D(w) ⊇ D(α).

On the other hand, if there exists j ∈ D(w) \D(α), then πwzα = 0 since πjzα = 0 by

(3.7). Hence HW (0)·πw0(α)zα has a basis {πwzα : w ∈ [w0(α), w1(α)]}, and is isomorphic

to Pα via πwzα 7→ πwπw0(αc) for all w ∈ [w0(α), w1(α)].

Remark 3.2.4. Garsia and Stanton [27] pointed out a way to reduce the descent mono-

mials in F[Λ] to the descent monomials in F[X] for type A. However, it does not give

Theorem 3.1.6 directly from Theorem 3.2.3; instead, one should consider the Demazure

operators on F[X(T )] where X(T ) is the character group of the subgroup T of diagonal

matrices in GL(n,F).

3.3 Flag varieties

In this section we study the action of the 0-Hecke algebras on the (complete) flag

varieties. Assume F is a finite field Fq of q elements, where q is a power of a prime p,

throughout this section.

Let G be a finite group of Lie type over Fq, with Borel subgroup B and Weyl group

W . Assume that W is generated by simple reflections s1, . . . , sr. Every composition α

of r + 1 corresponds to a parabolic subgroup Pα := BWD(α)cB of G. The partial flag

variety 1GPα is the induction of the trivial representation of Pα to G, i.e. the Fq-span of

all right Pα-cosets in G. Taking α = 1r+1 we have the (complete) flag variety 1GB.

For type A, one has G = GL(n,Fq), and if α = (α1, . . . , α`) is a composition of

n, then Pα is the group of all block upper triangular matrices with invertible diagonal

blocks of sizes α1, . . . , α`. Using the action of G on the vector space V = Fnq , one can

identify 1GPα with the Fq-span of all partial flags of subspaces 0 ⊂ V1 ⊂ · · · ⊂ V` = V

satisfying dimVi = αi for i = 1, . . . , `; in particular, 1GB is the Fq-span of all complete

flags of V .



40

3.3.1 0-Hecke algebra action on 1GB

Given a subset H ⊆ G, let

H =
∑
h∈H

h inside ZG.

Then the right ZG-module B · ZG is isomorphic to the induction of the trivial repre-

sentation of B to G. By work of Kuhn [40], the endomorphism ring EndZG(B ·ZG) has

a basis {fw : w ∈W}, with fw given by

fw(B) = BwB = UwwB.

Here Uw is the product of the root subgroups of those positive roots which are sent to

negative roots by w−1 (see [18, Proposition 1.7]). The endomorphism ring EndZG(B·ZG)

is isomorphic to the Hecke algebra HW (q) of W with parameter q = |Usi |, since the

relations satisfied by {fw : w ∈W} are the same as those satisfied by the standard basis

{Tw : w ∈W} for HW (q).

By extending scalars from Z to F = Fq, we obtain a G-equivariant action of the

0-Hecke algebra HW (0) on 1GB by

πw(Bg) := BwBg, ∀g ∈ G, ∀w ∈W.

We will use left cosets in the next subsection, and in that case there is a similar right

HW (0)-action.

Given a finite dimensional filtered HW (0)-module Q and a composition α of r + 1,

define Qα to be the F-subspace of the elements in Q that are annihilated by πj for all

j /∈ D(α), i.e.

Qα :=
⋂

j∈D(α)c

kerπj .

The next lemma gives the simple composition factors of Q by inclusion-exclusion.

Lemma 3.3.1. Given a finite dimensional HW (0)-module Q and a composition α of

r + 1, the multiplicity of the simple HW (0)-module Cα among the composition factors

of Q is

cα(Q) =
∑
β4α

(−1)`(α)−`(β) dimFq(Qβ).
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Proof. Let 0 = Q0 ⊂ Q1 ⊂ · · · ⊂ Qk = Q be a composition series. We induct on the

composition length k. The case k = 0 is trivial. Assume k > 0 below.

Suppose Q/Q′ ∼= Cγ for some γ |= r + 1, i.e. there exists an element z in Q \ Q′

satisfying

πiz ∈

{
−z +Q′, if i ∈ D(γ),

Q′, if i /∈ D(γ).

Let u be the longest element of the parabolic subgroup WD(γ)c of W , and let

z′ = πuz =
∑

w∈WD(γ)c

πwz.

Since D(w) ⊆ D(γ)c for all w in the above sum, we have z′ ∈ z+Q′. Then any element

in

Q = Q′ ⊕ Fz = Q′ ⊕ Fz′

can be written as y + az′ for some y ∈ Q′ and a ∈ F. Since D(u−1) = D(γ)c, one has

πiz
′ = πiπuz = 0 for all i /∈ D(γ). Consider an arbitrary composition β of r + 1.

If γ4β then for any i /∈ D(β) we must have i /∈ D(γ) and thus πi(y + az′) = πiy.

It follows that πi(y + az′) = 0 if and only if πiy = 0, i.e. Qβ = Q′β ⊕ Fz′.
If γ 64β then there exists i ∈ D(γ) \D(β). Using z′ ∈ z +Q′ we have

πi(y + az′) = πiy + aπiz
′ ∈ −az +Q′.

If πi(y + az′) = 0 then a = 0. This implies Qβ = Q′β.

It follows that

cα(Q) =
∑
β4α

(−1)`(α)−`(β) dimFq(Qβ)

=
∑
β4α

(−1)`(α)−`(β) dimFq(Q
′
β) +

∑
γ4β4α

(−1)`(α)−`(β)

= cα(Q′) + δαγ .

On the other hand, by induction hypothesis, the multiplicity of Cα in the composi-

tion factors of Q is also cα(Q′) + δαγ . Hence we are done.
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Corollary 3.3.2. (i) If Q is a finite dimensional graded HW (0)-module and α is a

composition of r+1, then the graded multiplicity of the simple HW (0)-module Cα among

the composition factors of Q is

cα(Q) =
∑
β4α

(−1)`(α)−`(β)Hilb(Qβ, t).

(ii) Let W = Sn. Then

Cht(Q) =
∑

α|=r+1

Hilb(Qα, t)Mα.

Consequently, Cht(Q) ∈ QSym[t] is a symmetric function, i.e. it lies in Sym[t], if and

only if

Hilb(Qα, t) = Hilb(Qβ, t) whenever β is a rearrangement of α.

Proof. Applying the previous lemma to each homogeneous component of Q one obtains

(i). Then using inclusion-exclusion one obtains (ii).

Remark 3.3.3. Lemma 3.3.1 and Corollary 3.3.2 hold for an arbitrary field F.

Theorem 3.3.4. The multiplicity of Cα among the simple composition factors of 1GB is

cα(1GB) =
∑

w∈W :D(w−1)=D(α)

q`(w).

Proof. Let Bg be an element in 1GB where g ∈ FG. If it is annihilated by πj for all

j ∈ D(α)c, then BwBg = πw(Bg) = 0 for all w with D(w) ∩ D(α)c 6= ∅, and in

particular, for all w in WD(α)c \ {1}. Hence

Bg = BWD(α)cBg = Pαg ∈ 1GPα .

Conversely, πj(Pαg) = πjπw0(D(α)c)(Bg) = 0 for all j ∈ D(α)c. Therefore (1GB)α = 1GPα .

Applying Lemma 3.3.1 to 1GB gives

cα(1GB) =
∑
β4α

(−1)`(α)−`(β)|Pα\G|

=
∑
β4α

(−1)`(α)−`(β)
∑

w∈W :D(w−1)⊆D(α)

|Uw|

=
∑

w∈W :D(w−1)=D(α)

q`(w).



43

Corollary 3.3.5. If G = GL(n,Fq) then Ch
(
1GB
)

= H̃1n(x; q).

Proof. For G = GL(n,Fq) we have `(w) = inv(w) and thus equation (2.2) shows

cα(1GB) = rα(q). The result then follows from Corollary 3.1.10.

3.3.2 Decomposing the G-module 1GB by 0-Hecke algebra action

We consider the homology representations χαq of G, which are the top homology of the

type-selected Tits buildings of G, for all compositions α |= r + 1. To give the explicit

definitions, assume in this subsection that 1GPα is the Fq-span of left Pα-cosets in G.

Then 1GB admits a right HW (0)-action defined by gB · πw = gBwB for all g ∈ G and

w ∈W . The left cosets gPα for all α |= r+1 form a poset under reverse inclusion, giving

an (abstract) simplicial complex called the Tits building and denoted by ∆ = ∆(G,B).

The type of a face gPα is τ(gPα) = D(α), and every chamber gB has exactly one vertex

of each type, i.e. ∆(G,B) is balanced.

If β and γ are compositions of r+ 1 with D(β) = D(γ)\{i} for some i ∈ D(γ), then

we write β41γ and [β : γ] = (−1)i. The chain complex of the type-selected subcomplex

∆α = {F ∈ ∆(G,B) : τ(F ) ⊆ D(α)c}.

gives rise to an exact sequence

0→ χαq → 1GPα
∂−→
⊕
β41α

1GPβ
∂−→
⊕
γ41β

1GPγ
∂−→ · · · ∂−→ 1GG → 0 (3.9)

where the boundary maps are given by

∂ : gPβ 7→
∑
γ41β

[β : γ] · gPγ .

The homology representation χαq is then defined as

χαq := ker

1GPα →
⊕
β41α

1GPβ

 =
⋂
β41α

ker
(

1GPα → 1GPβ

)
.

The following decomposition of (left) G-modules is well-known (see e.g. Smith [52]):

1GB =
⊕

α|=r+1

χαq . (3.10)
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On the other hand, Norton’s decomposition of the 0-Hecke algebra HW (0) implies a

decomposition of 1 into primitive orthogonal idempotents, i.e.

1 =
∑

α|=r+1

hαπw0(α)πw0(αc), hα ∈ HW (0).

This decomposition of 1 into primitive orthogonal idempotents is explicitly given by

Berg, Bergeron, Bhargava and Saliola [6], and is different from the one provided by

Denton [17]. By the right action of HW (0) on 1GB, we have another decomposition of

G-modules:

1GB =
⊕

α|=r+1

1GB hαπw0(α)πw0(αc). (3.11)

Proposition 3.3.6. The two G-module decompositions (3.10) and (3.11) are the same.

Proof. Comparing (3.10) with (3.11) one sees that it suffices to show 1GBhαπw0(α)πw0(αc) ⊆
χαq . Assume

Bhαπw0(α) =
∑
i

giB, gi ∈ G.

For any β |= r + 1 we have

Bπw0(βc) = BWD(β)cB = P β.

Hence

Bhαπw0(α)πw0(αc) =
∑
i

giPα ∈ 1GPα

and

∂
(
Bhαπw0(α)πw0(αc)

)
=
∑
β41α

±
∑
i

giP β =
∑
β41α

±Bhαπw0(α)πw0(βc).

If β41α then there exists i ∈ D(α) ∩D(β)c, and thus πw0(α)πw0(βc) = 0. Therefore we

are done.

One sees from (3.11) that χαq is in general not a right HW (0)-submodule of 1GB.

However, when G = GL(n,Fq), one has that χ
(n)
q is the trivial representation and χ

(1n)
q

is the Steinberg representation of G [37], and both are right (isotypic) HW (0)-modules.
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3.3.3 Coinvariant algebra of (G,B)

In this subsection we study the action of the 0-Hecke algebra Hn(0) on the coinvariant

algebra Fq[X]B/(Fq[X]G+) of the pair (G,B), where G = GL(n,Fq) and B is the Borel

subgroup of G.

Given a right FqG-module M , there is an isomorphism

HomFqG(1GB,M)
∼−→ MB,

φ 7→ φ(B)

with inverse map given by φm(B) = m for all m ∈ MB. The left Hn(0)-action

πwB = BwB on 1GB commutes with the right G-action and induces a left action on

HomFqG(1GB,M) by

πw(φ)(B) = φ(πw−1B) = φm(Bw−1B).

Hence we have a left Hn(0)-action on MB by

πw(m) = πw(φm)(B) = φm(Bw−1B) = φm(Bw−1Uw−1) = mw−1Uw−1 .

The group G has a left action on Fq[X] by linear substitution, and this can be turned

into a right action by f · g = g−1f for all f ∈ Fq[X] and g ∈ G. Thus Hn(0) has a left

action on Fq[X]B by

πw(f) = f · w−1Uw−1 = Uwwf, ∀f ∈ Fq[X]B.

This action preserves the grading, and leaves the ideal (Fq[X]G+) stable: if hi ∈ Fq[X]G+,

fi ∈ Fq[X]B, then

πw

(∑
i

hifi

)
= Uww

(∑
i

hifi

)
=
∑
i

hiUww(fi).

Hence the coinvariant algebra Fq[X]B/(Fq[X]G+) of (G,B) becomes a graded Hn(0)-

module.

Lemma 3.3.7. If Q = Fq[X]B/(Fq[X]G+) and α is a composition of n, then

Qα :=
⋂

j∈D(α)c

kerπj = Fq[X]Pα/(Fq[X]G+).
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Proof. If f ∈ Fq[X]Pα , then for all j /∈ D(α) one has Usjsj ⊆ Pα and hence

πjf = U sjsjf = |Usj | · f = qf = 0.

Conversely, a B-invariant polynomial f gives rise to a Pα-invariant polynomial∑
gB∈Pα/B

gf =
∑

w∈WD(α)c

Uwwf = πw0(D(α)c)f.

If πjf belongs to the ideal (Fq[X]G+) for all j /∈ D(α), so does πwf ∈ (Fq[X]G+) for all

w ∈WD(α)c \ {1}. Thus πw0(αc)f − f ∈ (Fq[X]G+) and we are done.

Theorem 3.3.8. The Hn(0)-module Fq[X]B/(Fq[X]G+) has degree graded quasisymmet-

ric characteristic

Cht
(
Fq[X]B/(Fq[X]G+)

)
=
∑
α|=n

[
n

α

]
q,t

Mα =
∑
α|=n

rα(q, t)Fα.

Proof. Let Q = Fq[X]B/(Fq[X]G+) and let α |= n. It follows from Lemma 3.3.7 that

Hilb(Qα, t) = Hilb
(
Fq[X]Pα/(Fq[X]G+), t

)
=

[
n

α

]
q,t

.

Thus

cα(Q) =
∑
β4α

(−1)`(α)−`(β)

[
n

β

]
q,t

= rα(q, t).

Then the result follows immediately from Corollary 3.3.2.

3.4 Cohomology ring of Springer fibers

In Section 3.1 we showed that the coinvariant algebra of Sn is an Hn(0)-module whose

graded quasisymmetric characteristic is the modified Hall-Littlewood symmetric func-

tion indexed by the partition 1n. Now we generalize this result to partitions of hook

shapes.

Throughout this section a partition of n is denoted by µ = (µ1, . . . , µn), where

0 ≤ µ1 ≤ · · · ≤ µn. Denote n(µ) = µn−1 + 2µn−2 + · · · + (n − 1)µ1. One can view
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µ as a composition by dropping all the zero parts of µ. Then n(µ) = maj(µ), where

maj(α) =
∑

i∈D(α) i, for all compositions α.

Let V be an n-dimensional complex vector space. Fix a nilpotent matrix Xµ whose

Jordan blocks are of size µ1, . . . , µ`. The Springer fiber Fµ corresponding to the partition

µ is the variety of all flags 0 ⊂ V1 ⊂ · · · ⊂ Vn = V of subspaces Vi ⊆ V satisfying

dimVi = i and Xµ(Vi) ⊆ Vi−1. The cohomology ring of Fµ is isomorphic to the ring

C[X]/Jµ for a certain homogeneous Sn-stable ideal Jµ, and carries an Sn-action that

can be obtained from the Sn-action on C[X]. In particular, if µ = 1n then Fµ is the

flag variety G/B and C[X]/Jµ is the coinvariant algebra of Sn.

Theorem 3.4.1 (Hotta-Springer [33], Garsia-Procesi [26]). The graded Frobenius char-

acteristic of C[X]/Jµ is the modified Hall-Littlewood symmetric function

H̃µ(x; t) =
∑
λ

tn(µ)Kλµ(t−1)sλ

where Kλµ(t) is the Kostka-Foulkes polynomial.

To find an analogous result for the 0-Hecke algebras, we let Rµ := F[X]/Jµ where

F is an arbitrary field, and consider the question of when the Hn(0)-action on F[X]

preserves the ideal Jµ. Recall the following construction of Jµ by Tanisaki [58]. Let the

conjugate of a partition µ of n be µ′ = (0 ≤ µ′1 ≤ · · · ≤ µ′n). Note that the height of

the Young diagram of µ is h = h(µ) := µ′n. Let

dk(µ) = µ′1 + · · ·+ µ′k, k = 1, . . . , n.

Then the ideal Jµ is generated by

{er(S) : k ≥ r > k − dk(µ), |S| = k, S ⊆ {x1, . . . , xn}} (3.12)

where er(S) is the r-th elementary symmetric function in the set S of variables. See

also Garsia and Procesi [26].

Proposition 3.4.2. The Demazure operators preserve the ideal Jµ if and only if µ is

a hook.

Example 3.4.3. We give some examples before proving this result.
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First let µ = 114000 be a partition of n = 6, which is a hook of height h = 3. Since

µ′ = 001113, one has

(dk(µ) : 1 ≤ k ≤ 6) = (0, 0, 1, 2, 3, 6),

(k − dk(µ) : 1 ≤ k ≤ 6) = (1, 2, 2, 2, 2, 0).

Thus Jµ is generated by ei = ei(x1, . . . , x6) for i = 1, . . . , 6, and

{e3(S) : |S| = 3} ∪ {e3(S), e4(S) : |S| = 4} ∪ {e3(S), e4(S), e5(S) : |S| = 5}. (3.13)

The first set appearing in the above union (3.13) can be written as

M3 := {xixjxk : 1 ≤ i < j < k ≤ 6};

the second and third sets in (3.13) are redundant for Jµ, as their elements belong to the

ideal generated byM3. Therefore Jµ is generated by {e1, . . . , e6}∪M3 (actually e4, e5,

and e6 are also redundant). We already know that the Demazure operators are linear

over e1, . . . , e6; if 1 ≤ i1 < i2 < i3 ≤ 6 and f is an arbitrary monomial then it follows

from (3.3) that πi(xi1xi2xi3f) is divisible by some element in M3. Thus the ideal Jµ is

Hn(0)-stable.

Now we look at the partition µ = (2, 2) of n = 4, which is not a hook. One has

h = 2, µ′ = µ = 0022, and (k − dk(µ′)) = (1, 2, 1, 0). Thus Jµ is generated by

{e2(S), e3(S) : |S| = 3} ∪ {e1, e2, e3, e4}.

If Jµ is Hn(0)-stable, then π3(e2(x1, x2, x3)) = x1x4 + x2x4 ∈ Jµ and thus

e2(x1, x2, x4)− π3(e2(x1, x2, x3)) = x1x2 ∈ Jµ.

But one can check x1x2 /∈ Jµ. This contradiction shows that J(2,2) is not H4(0)-stable.

Proof. The proof is similar to the above example. We first assume µ is a hook, i.e.

µ = (0n−h, 1h−1, n− h+ 1). Then µ′ = (0h−1, 1n−h, h) and so

(1− d1(µ), 2− d2(µ), . . . , n− dn(µ)) = (1, 2, . . . , h− 1, h− 1, . . . , h− 1, 0).

It follows that the ideal Jµ is generated by the elementary symmetric functions e1, . . . , en,

together with the following partial elementary symmetric functions

{er(S) : r = h, . . . , k, S ⊆ {x1, . . . , xn}, |S| = k, k = h, . . . , n− 1}.
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These partial elementary symmetric functions all belong to the ideal generated by

Mh = {xi1 · · ·xih : 0 ≤ i1 < · · · < ih ≤ n}.

Thus Jµ is generated by {e1, . . . , en} ∪Mh.

We know that the Demazure operators are ei-linear for all i ∈ [n]. By (3.3), if

xi1 · · ·xih is in Mh and f is an arbitrary monomial, then πi(xi1 · · ·xihf) is divisible by

some element in Mh. Thus the ideal Jµ is preserved by the Demazure operators.

Now assume µ is not a hook. Then µ′n−1 ≥ 2 and thus

k − dk(µ) = k − n+ n− dk(µ)

= k − n+ µ′n + µ′n−1 + · · ·+ µ′k+1

≥ k − n+ µ′n + 2 + 1 + · · ·+ 1

= µ′n = h

for k = n− 2, . . . , n− µ1 + 1. One also sees that

k − dk(µ) =


0, k = n,

h− 1, k = n− 1,

k, n− µ1 ≥ k ≥ 1.

Thus the only elements in the generating set (3.12) that have degree no more than h

are e1, . . . , eh and those eh(S) with |S| = n− 1.

Suppose to the contrary that Jµ is preserved by Demazure operators. Since

eh(x1, . . . , xn−1) = xn−1eh−1(x1, . . . , xn−2) + eh(x1, . . . , xn−2) ∈ Jµ

we have

πn−1eh(x1, . . . , xn−1) = xneh−1(x1, . . . , xn−2) ∈ Jµ

and thus

eh(x1, . . . , xn−2, xn)− πn−1eh(x1, . . . , xn−1) = eh(x1, . . . , xn−2) ∈ Jµ.

Repeating this process one obtains eh(x1, . . . , xh) = x1 · · ·xh ∈ Jµ. Then applying the

Demazure operators to x1 · · ·xh gives xi1 · · ·xih ∈ Jµ whenever 1 ≤ i1 < · · · < ih ≤ n.

Considering the degree we have

xi1 · · ·xih =

h∑
i=1

fiei +
∑

|S|=n−1

cSeh(S)
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where fi ∈ F[X] is homogeneous of degree h− i and cS ∈ F. Descending this equation

to the coinvariant algebra F[X]/(e1, . . . , en), one obtains an expression of an arbitrary

element in

Mh,n−1 := {xi1 · · ·xih : 1 ≤ i1 < · · · < ih ≤ n− 1}

as an F-linear combination of {eh(S) : |S| = n− 1}. Thus the F-subspaces U and U ′ of

F[X]/(e1, . . . , en) spanned respectively byMh,n−1 and {eh(S) : |S| = n− 1} satisfy the

relation U ⊆ U ′.
It is well-known that all divisors of xn−1

1 xn−2
2 · · ·xn−1 form an F-basis for the coin-

variant algebra F[X]/(e1, . . . , en), i.e. the Artin basis [4]. Thus

n =

(
n

n− 1

)
≥ dimU ′ ≥ dimU =

(
n− 1

h

)
≥
(
n− 1

2

)
where the last inequality follows from 2 ≤ h ≤ n − 2 since µ is not a hook. Therefore

we must have n = 4, h = 2, and µ = (2, 2). But we know from the example preceding

this proof that J(2,2) is not H4(0)-stable. Thus the proof is complete.

Theorem 3.4.4. Assume µ = (0n−h, 1h−1, n−h+ 1) is a hook and view it as a compo-

sition by removing all zeros. Then the Hn(0)-module Rµ is a direct sum of the projective

indecomposable Hn(0)-modules Pα for all compositions α4µ, i.e.

Rµ ∼=
⊕
α4µ

Pα.

Proof. By the proof of the previous proposition, Jµ is generated by e1, . . . , en and

Mh = {xi1 · · ·xih : 1 ≤ i1 < · · · < ih ≤ n}.

Thus Rµ is the quotient of F[X]/(F[X]Sn+ ) by its ideal generated by Mh. By Theo-

rem 3.1.6, it suffices to show that F[X]/Jµ has a basis given by

{πwxD(w) : w ∈ Sn, D(w) ⊆ D(µ)}. (3.14)

If D(w) 6⊆ D(µ) = {1, 2, . . . , h− 1}, i.e. w has a descent i ≥ h, then xD(w) contains

at least h distinct variables, and so do all monomials in πwxD(w) by (3.3). Thus F[X]/Jµ

is spanned by (3.14).
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To show (3.14) is linearly independent, assume∑
D(w)⊆D(µ)

cwπwxD(w) ∈ Jµ, cw ∈ F.

For any polynomial f ∈ F[X], let [f ]h be the polynomial obtained from f by removing

all terms divisible by some element in Mh. It follows that∑
D(w)⊆D(µ)

cw[πwxD(w)]h ∈ (e1, . . . , eh−1).

If D(w) ⊆ D(µ) = [h − 1] then the leading term of [πwxD(w)]h under “≺” is still the

descent monomial wxD(w). By Lemma 3.1.5,{
[πwxD(w)]h : w ∈ Sn, D(w) ⊆ D(µ)

}
gives a linearly independent set in F[X]/(F[X]Sn+ ). It follows that cw = 0 whenever

D(w) ⊆ D(µ).

By work of Bergeron and Zabrocki [8], the modified Hall-Littlewood functions H̃µ(x; t)

have the following noncommutative analogue lying in NSym[t] for all compositions α:

H̃α(x; t) :=
∑
β4α

tmaj(β)sβ.

Corollary 3.4.5. Assume µ is a hook. Then

cht(Rµ) =
∑
α4µ

tmaj(α)sα = H̃µ(x; t), (3.15)

Cht(Rµ) =
∑
α4µ

tmaj(α)sα = H̃µ(x; t). (3.16)

Proof. Theorem 3.4.4 immediately implies (3.15). The degree graded quasisymmetric

characteristic of Rµ is the commutative image of cht(Rµ), which equals H̃µ(x; t) when

µ is a hook, according to Bergeron and Zabrocki [8, Proposition 9].

Remark 3.4.6. (i) We showed in Section 3.1 that the coinvariant algebra F[X]/(F[X]Sn+ )

carries the regular representation of Hn(0); one also sees this from (3.15) with µ = 1n.
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(ii) Using certain difference operators, Hivert [29] defined a noncommutative analogue

of the Hall-Littlewood functions, which is in general different from the noncommutative

analogue of Bergeron and Zabrocki. However, they are the same when µ is a hook!

(iii) It is not clear to the author why the results are nice only in the hook case, except

for a naive explanation: the hooks are the only diagrams that belong to both the family

of the Young diagrams of partitions and the family of ribbon diagrams of compositions.

3.5 Questions for future research

3.5.1 Equidistribution of the inversion number and major index

The equidistribution of inv and maj was first proved on permutations of multisets by

P.A. MacMahon in the 1910s; applying an inclusion-exclusion would give their equidis-

tribution on inverse descent classes of Sn. However, the first proof for the latter result

appearing in the literature was by Foata and Schützenberger [23] in 1970, using a bijec-

tion constructed earlier by Foata [22]. Is there an algebraic proof from the (q, t)-bigraded

characteristic of F[x]/(F[x]Sn+ ), which is given in Corollary 3.1.10 (i) and involves inv,

maj, and inverse descents?

3.5.2 Decompositions of 1GB and F[x]B/(F[x]G+)

In § 3.3 we studied an HW (0)-action on the flag variety 1GB and found its simple com-

position factors, but we do not know the decomposition of 1GB into indecomposable

HW (0)-modules. Assume G = GL(n,Fq) below. Computations show that 1GB is in

general not projective, although its quasisymmetric characteristic is always symmetric.

The coinvariant algebra F[x]B/(F[x]G+) is not a projective Hn(0)-module either, since

its graded quasisymmetric characteristic is not even symmetric (see the definition of

the (q, t)-multinomial coefficients). To find its decomposition, it will be helpful to know

more (nonprojective) indecomposable Hn(0)-modules (there are infinitely many, and

some were studied by Duchamp, Hivert, and Thibon [19]).

Another question is to find a q-analogue of the Demazure operators, which might

give another Hn(0)-action on F[x]B/(F[x]G+).
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3.5.3 Coincidence of Frobenius type characteristics

For G = GL(n,C), the complex flag variety 1GB has its cohomology ring isomorphic to

the coinvariant algebra of Sn, whose graded Frobenius characteristic and graded qua-

sisymmetric characteristic both equal the modified Hall-Littlewood symmetric function

H̃1n(x; t). For G = GL(n,Fq), the flag variety 1GB itself, when defined over a field of

characteristic p | q, is also an Hn(0)-module whose quasisymmetric characteristic equals

H̃1n(x; q). Is there a better explanation for the coincidence of these Frobenius type

characteristics?



Chapter 4

0-Hecke algebra action on the

Stanley-Reisner ring of the

Boolean algebra

In the previous chapter we studied the Hn(0)-action on the polynomial ring F[X]. In

this chapter we define an action of Hn(0) on the Stanley-Reisner ring of the Boolean

algebra, which turns out to be a natural analogue of the polynomial ring F[X], with

nice behavior under the Hn(0)-action.

4.1 Stanley-Reisner ring of the Boolean algebra

In this section we study the Stanley-Reisner ring of the Boolean algebra.

4.1.1 Boolean algebra

The Boolean algebra Bn is the ranked poset of all subsets of [n] := {1, 2, . . . , n} ordered

by inclusion, with minimum element ∅ and maximum element [n]. The rank of a subset

of [n] is defined as its cardinality. The Stanley-Reisner ring F[Bn] of the Boolean algebra

Bn is the quotient of the polynomial algebra F [yA : A ⊆ [n]] by the ideal

(yAyB : A and B are incomparable in Bn) .

54
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It has an F-basis {yM} indexed by the multichains M in Bn, and is multigraded by the

rank multisets r(M) of the multichains M .

The symmetric group Sn acts on the Boolean algebra Bn by permuting the integers

1, . . . , n. This induces an Sn-action on the Stanley-Reisner ring F[Bn], preserving its

multigrading. The invariant algebra F[Bn]Sn consists of all elements in F[Bn] invariant

under this Sn-action. For i = 0, 1, . . . , n, the rank polynomial θi :=
∑
|A|=i yA is

obviously invariant under the Sn-action; the converse is also true.

Proposition 4.1.1. The invariant algebra F[Bn]Sn equals F[Θ], where Θ := {θ0, . . . , θn}.

Proof. It suffices to show F[Bn]Sn ⊆ F[Θ]. The Sn-action on F[Bn] breaks up the set

of nonzero monomials into orbits, and the orbit sums form an F-basis for F[Bn]Sn .

The Sn-orbit of a nonzero monomial with rank multiset {0a0 , . . . , nan} consists of all

nonzero monomials with the same rank multiset, and the corresponding orbit sum equals

θa00 · · · θann . This completes the proof.

Garsia [24] showed that F[Bn] is a free F[Θ]-module on the basis of descent monomials

Yw :=
∏

i∈D(w)

y{w(1),...,w(i)}, ∀w ∈ Sn.

Example 4.1.2. Let n = 3. The Boolean algebra B3 consists of all subsets of {1, 2, 3}.
Its Stanley-Reisner ring F[B3] is a free F[Θ]-module with a basis of descent monomials,

where Θ consists of the rank polynomials

θ0 = y∅, θ1 := y1 + y2 + y3, θ2 := y12 + y13 + y23, θ3 := y123

and the descent monomials are

Y1 := 1, Ys1 := y2, Ys2s1 := y3, Ys2 := y13, Ys1s2 := y23, Ys1s2s1 := y23y3.

4.1.2 Multichains in Bn

We study the multichains in Bn, as they naturally index an F-basis for F[Bn]. We

first recall some notation from Chapter 1. A weak composition with length k ≥ 0 is a

sequence α = (α1, . . . , αk) of k nonnegative (positive for a composition) integers. The

size of α is |α| := α1 + · · · + αn. If |α| = n then we say α is a weak composition of
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n. We denote by Com(n, k) the set of all weak compositions of n with length k. The

descent multiset of α is the multiset D(α) := {α1, α1 + α2, α1 + · · ·+ αk−1}. The map

α 7→ D(α) gives a bijection between weak compositions of n and multisets with elements

in {0, . . . , n}. The parabolic subgroup Sα is the same as the parabolic subgroup of Sn

indexed by the underlying composition of α obtained by removing all zeros from α;

similarly for Sα.

The homogeneous components of F[Bn] are indexed by multisets with elements in

{0, . . . , n}, or equivalently by weak compositions α of n. The α-homogeneous component

F[Bn]α has an F-basis {yM : r(M) = D(α)}.
Let M = (A1 ⊆ · · · ⊆ Ak) be an arbitrary multichain of length k in Bn; set A0 := ∅

and Ak+1 := [n] by convention. Define α(M) := (α1, . . . , αk+1), where αi = |Ai|−|Ai−1|
for all i ∈ [k+1]. Then α(M) ∈ Com(n, k+1) and D(α(M)) = r(M), i.e. α(M) indexes

the homogeneous component containing yM . Define σ(M) to be the minimal element

in Sn which sends the standard multichain [α1] ⊆ [α1 +α2] ⊆ · · · ⊆ [α1 + · · ·+αk] with

rank multiset D(α(M)) to M . Then σ(M) ∈ Sα(M).

The map M 7→ (α(M), σ(M)) is a bijection between multichains of length k in Bn
and the pairs (α, σ) of α ∈ Com(n, k + 1) and σ ∈ Sα. A short way to write down

this encoding of M is to insert bars at the descent positions of σ(M). For example, the

length-4 multichain {2} ⊆ {2} ⊆ {1, 2, 4} ⊆ [4] in B4 is encoded by 2||14|3|.
There is another way to encode the multichain M . Let p(M) := (p1(M), . . . , pn(M)),

where pi(M) is the first position where i appears in M , i.e.

pi(M) := min{j ∈ [k + 1] : i ∈ Aj},

for i = 1, . . . , n. One checks that
pi(M) > pi+1(M)⇔ i ∈ D(σ(M)−1),

pi(M) = pi+1(M)⇔ i /∈ D(σ(M)−1), D(siσ(M)) 6⊆ D(α(M)),

pi(M) < pi+1(M)⇔ i /∈ D(σ(M)−1), D(siσ(M)) ⊆ D(α(M)).

(4.1)

This will be used later when we study the Hn(0)-action on F[Bn]. The map M 7→ p(M)

is an bijection between the set of multichains with length k in Bn and the set [k + 1]n

of all words of length n on the alphabet [k + 1], for any fixed integer k ≥ 0.
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Suppose that p(M) = p = (p1, . . . , pn) ∈ [k + 1]n. We define

inv(p) := #{(i, j) : 1 ≤ i < j ≤ n, pi > pj}.

One sees that inv(σ(M)) = inv(p(M)). Let p′ := (p′1, . . . , p
′
k) where

p′i := |{j : pj(M) ≤ i}| = |Ai|.

Then the rank multiset of M consists of p′1, . . . , p
′
k. If we draw k+1−pj boxes on the j-th

row of a n×k rectangle for all j ∈ [n], then p′i is the number of boxes on the (k+1−i)-th
column. For example, the multichain 3|14||2|5 corresponds to p = (2, 4, 1, 2, 5) ∈ [5]5,

and one has p′ = (1, 3, 3, 4) and the following picture.

This implies an equation which will be used later:

(qk + · · ·+ q + 1)n =
∑

p∈[k+1]n

∏
1≤j≤n

qk+1−pj =
∑

p∈[k+1]n

∏
1≤i≤k

qp
′
i . (4.2)

Define D(p) := {i ∈ [n− 1] : pi > pi+1}. For example, D(2, 5, 1, 2, 4) = {2}.
These two encodings (α(M), σ(M)) and p(M) of the multichains M in the Boolean

algebra Bn were already used by Garsia and Gessel [25] in their work on generating

functions of multivariate distributions of permutation statistics (with slightly different

notation). In the next section we will use these encodings to derive multivariate qua-

sisymmetric function identities from Hn(0)-action on the Stanley-Reisner ring of Bn,

giving generalizations of some results of Garsia and Gessel [25].

4.1.3 Rank-selection

Let α be a composition of n. We define the rank-selected Boolean algebra

Bα := {A ⊆ [n] : |A| ∈ D(α) ∪ {n}}

which is a ranked subposet of the Boolean algebra Bn. We always exclude ∅ but keep [n]

because there is a nice analogy between the Stanley-Reisner ring of B∗n := B1n = Bn\{∅}
and the polynomial ring F[X].
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To explain this analogy, we use the transfer map τ : F[Bn]→ F[X] defined by

τ(yM ) :=
∏

1≤i≤k

∏
j∈Ai

xj

for all multichains M = (A1 ⊆ · · · ⊆ Ak) in Bn. This transfer map is not a ring

homomorphism (e.g. y{1}y{2} = 0 but x1x2 6= 0). Nevertheless, it restricts to an

isomorphism τ : F[B∗n] ∼= F[X] of Sn-modules.

Proposition 4.1.1 showed that the invariant algebra F[B∗n]Sn equals the polynomial

algebra F[θ1, . . . , θn], and as mentioned in §4.1.1, F[B∗n] is a free F[θ1, . . . , θn]-module

on the descent basis {Yw : w ∈ Sn}. The transfer map τ sends the rank polynomials

θ1, . . . , θn to the elementary symmetric polynomials e1, . . . , en, which generate the in-

variant algebra F[X]Sn . It also sends the descent monomials Yw in F[B∗n] to the descent

monomials

Xw :=
∏

i∈D(w)

xw(1) · · ·xw(i)

in F[X] for all w ∈ Sn, which form a free F[X]Sn-basis for F[X] (see e.g. Garsia [24]).

Therefore F[B∗n] is in a nice analogy with F[X] via the transfer map τ .

Remark 4.1.3. The Stanley-Reisner ring F[Bn] is not much different from F[B∗n], as one

can see the F-algebra isomorphisms F[Bn] ∼= F[B∗n] ⊗F F[θ0] and F[Bn]/(θ0) ∼= F[B∗n],

where θ0 = y∅.

In general, the Stanley-Reisner ring of the rank-selected Boolean algebra Bα is the

multigraded subalgebra of F[Bn] generated by {yA : |A| ∈ D(α) ∪ {n}}. There is also a

projection φα : F[Bn]� F[Bα] of multigraded algebras given by

φα(yA) :=

yA, if A ⊆ [n], |A| ∈ D(α) ∪ {n},

0, if A ⊆ [n], |A| /∈ D(α) ∪ {n}.

The Sn-action preserves both the inclusion F[Bα] ⊆ F[Bn] and the projection φα. Thus

one has an isomorphism

F[Bn]/(A ⊆ [n] : |A| /∈ D(α) ∪ {n}) ∼= F[Bα]

of multigraded F-algebras and Sn-modules.

Applying the projection φα one sees that the invariant algebra F[Bα]Sn is the polyno-

mial algebra F[Θα], where Θα := {θi : i ∈ D(α)∪{n}}, and F[Bα] is a free F[Θα]-module

on the basis of descent monomials Yw for all w ∈ Sα.
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4.2 0-Hecke algebra action

In this section we define an action of the 0-Hecke algebra Hn(0) on the Stanley-Reisner

ring [Bn] and establish Theorem 1.3.1 and Theorem 1.3.2.

4.2.1 Definition

We saw an analogy between F[Bn] and F[X] in the last section. The usual Hn(0)-action

on the polynomial ring F[X] is via the Demazure operators

πi(f) :=
xi+1f − xi+1sif

xi − xi+1
, ∀f ∈ F[X], 1 ≤ i ≤ n− 1. (4.3)

The above definition is equivalent to

πi(x
a
i x

b
i+1m) =


(xa−1
i xb+1

i+1 + xa−2
i xb+2

i+1 · · ·+ xbix
a
i+1)m, if a > b,

0, if a = b,

−(xai x
b
i+1 + xa+1

i xb−1
i+1 + · · ·+ xb−1

i xa+1
i+1 )m, if a < b.

(4.4)

Here m is a monomial in F[X] containing neither xi nor xi+1. Denote by π′i the operator

obtained from (4.4) by taking only the leading term (underlined) in the lexicographic

order of the result. Then π′1, . . . , π
′
n−1 realize another Hn(0)-action on F[X]. We call it

the transferred Hn(0)-action because it can be obtained by applying the transfer map

τ to our Hn(0)-action on F[Bn], which we now define.

Let M = (A1 ⊆ · · · ⊆ Ak) be a multichain in Bn. Recall that

pi(M) := min{j ∈ [k + 1] : i ∈ Aj}

for all i ∈ [n]. We define

πi(yM ) :=


−yM , pi(M) > pi+1(M),

0, pi(M) = pi+1(M),

si(yM ), pi(M) < pi+1(M)

(4.5)

for i = 1, . . . , n − 1. Applying the transfer map τ one recovers π′i. For instance, when

n = 4 one has

π1(y1|34||2|) = y2|34||1|, π2(y1|34||2|) = −y1|34||2|, π3(y1|34||2|) = 0.
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Applying the transfer map one has

π′1(x4
1x2x

3
3x

3
4) = x1x

4
2x

3
3x

3
4, π′2(x4

1x2x
3
3x

3
4) = −x4

1x2x
3
3x

3
4, π′3(x4

1x2x
3
3x

3
4) = 0.

It is easy to check the relations π2
i = −πi and πiπj = πjπi whenever 1 ≤ i, j ≤ n−1

and |i− j| > 1. For any i ∈ [n− 2], by considering different possibilities for the relative

positions of pi(M), pi+1(M), and pi+2(M), one verifies πiπi+1πi = πi+1πiπi+1 case by

case. Hence Hn(0) acts on F[Bn] via the above defined operators π1, . . . , πn−1. This

Hn(0)-action preserves the multigrading of F[Bn], and thus restricts to the Stanley-

Reisner ring F[Bα] for any composition α of n.

Another way to see that π1, . . . , πn−1 realize an Hn(0)-action on F[Bn] preserving

the multigrading is to show that each homogeneous component of F[Bn] is isomorphic

to an Hn(0)-module. We will give this in Lemma 4.2.13.

Remark 4.2.1. Our Hn(0) action on F[Bn] also has a similar expression to the Demazure

operator (4.3) as one can show that it has the following properties.

(i) If f, g, h are elements in F[Bn] such that f = gh and h is homogeneous, then there

exists a unique element g′, defined as the quotient f/h, such that f = g′h and yMh 6= 0

for every monomial yM appearing in g′.

(ii) Suppose that i ∈ [n−1] and M = (A1 ⊆ · · · ⊆ Ak) is a multichain in Bn. Let j be the

largest integer in {0, . . . , k} such that Aj∩{i, i+1} = ∅. Then si(yM ) = yM(i)si(yM i
) and

πi(yM ) = yM(i)πi(yM i
), where M (i) := (A1 ⊆ · · · ⊆ Aj) and M i := (Aj+1 ⊆ · · · ⊆ Ak).

(iii) One has

πi(yM i
) =

y{i+1}yM i
− y{i+1}si(yM i

)

y{i} − y{i+1}
.

4.2.2 Basic properties

We define the invariant algebra F[Bn]Hn(0) of the Hn(0)-action on F[Bn] to be the trivial

isotypic component of F[Bn] as an Hn(0)-module, namely

F[Bn]Hn(0) := {f ∈ F[Bn] : πif = f, i = 1, . . . , n− 1}

= {f ∈ F[Bn] : πif = 0, i = 1, . . . , n− 1} .

This is an analogue of the invariant algebra F[Bn]Sn , which equals F[Θ] by Proposi-

tion 4.1.1, and we show that they are actually the same.
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Proposition 4.2.2. The invariant algebra F[Bn]Hn(0) equals F[Θ].

Proof. Let i ∈ [n − 1]. We denote by M1, M2, and M3 the sets of all multichains M

in Bn with pi(M) < pi+1(M), pi(M) = pi+1(M), and pi(M) > pi+1(M), respectively.

The action of si pointwise fixes M2 and bijectively sends M1 to M3. It follows from

(4.5) that πi(f) = 0 if and only if

f =
∑

M∈M1

aM (yM + ysiM ) +
∑

M∈M2

bMyM , a, b ∈ F.

This is also equivalent to si(f) = f . Therefore F[Bn]Hn(0) = F[Bn]Sn = F[Θ].

The Sn-action on F[Bn] is Θ-linear, and so is the Hn(0)-action.

Proposition 4.2.3. The Hn(0)-action on F[Bn] is Θ-linear.

Proof. Let i ∈ [n − 1] and let M = (A1 ⊆ · · · ⊆ Ak) be an arbitrary multichain in Bn.

Since θ0 = ∅, one has πi(θ0yM ) = θ0πi(yM ). It remains to show πi(θryM ) = θrπi(yM )

for any r ∈ [n]. One has |Aj | < r ≤ |Aj+1| for some j ∈ {0, 1, . . . , k}, where A0 = ∅ and

Ak+1 = [n] by convention. Then

θryM =
∑
A∈A

yMyA.

where

A := {A ⊆ [n] : |A| = r, Aj ( A ⊆ Aj+1}.

If A ∈ A then yMyA = yM∪A where M ∪ A is the multichain obtained by inserting A

into M . Let A1 [ A2, A3, resp. ] be the collections of all sets A in A satisfying

pi(M ∪A) < [=, >, resp.] pi+1(M ∪A)

We distinguish three cases below.

If pi(M) > pi+1(M), then πi(yM ) = −yM . Assume A ∈ A. If i /∈ A then one has

pi(M ∪A) > pi+1(M ∪A). If i ∈ A ⊆ Aj+1 then pi(M) > pi+1(M) forces i+1 ∈ Aj ⊆ A
and one still has pi(M ∪A) > pi+1(M ∪A). Hence A = A3 which implies

πi(θryM ) = −θryM = θrπi(yM ).
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If pi(M) = pi+1(M), then πi(yM ) = 0 and we need to show πi(θryM ) = 0. First

assume A ∈ A1. Then A contains i but not i+1, Aj contains neither, and Aj+1 contains

both. Hence si(A) ∈ A3 and

πi(yM∪A) = si(yM∪A) = ysi(M∪A).

Similarly if A ∈ A3 then si(A) ∈ A1 and thus si gives an bijection between A1 and A3.

For any A ∈ A2 one has πi(yM∪A) = 0. Therefore

πi(θryM ) =
∑
A∈A1

πi(yM∪A + πi(yM∪A)) = 0.

Here the last equality follows from the relation π2
i = −πi.

Finally, we consider the case pi(M) < pi+1(M). Assume A ∈ A. If i ∈ Aj then

pi(M ∪A) < pi+1(M ∪A). If i /∈ Aj , then i+ 1 /∈ Aj+1 and so i+ 1 /∈ A, which implies

pi(M ∪A) < pi+1(M ∪A). Thus A = A1 and

πi(θryM ) = si(θryM ) = θrsi(yM ) = θrπi(yM ).

This completes the proof.

Therefore the coinvariant algebra F[Bn]/(Θ) is a multigraded Hn(0)-module, and

we will see in the next subsection that it carries the regular representation of Hn(0).

This cannot be obtained simply by applying the transfer map τ , since τ is not a map

of Hn(0)-modules (see §4.3.1).

4.2.3 Noncommutative Hall-Littlewood symmetric functions

In this subsection we interpret the noncommutative analogues of the Hall-Littlewood

symmetric functions by the Hn(0)-action on the Stanley-Reisner ring of the Boolean

algebra. We write a partition of n as an increasing sequence µ = (0 < µ1 ≤ · · · ≤ µk)

of positive integers whose sum is n, and view it as a composition in this way whenever

needed. We want to establish a complete noncommutative analogue of Theorem 3.4.1,

which states that the polynomial ring C[X] has a homogeneous Sn-stable ideal Jµ

such that the graded Frobenius characteristic of the Sn-module Rµ = C[X]/Jµ is the

modified Hall-Littlewood symmetric function indexed by µ.
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Recall from §3.4 that the ideal Jµ is generated by

{ei(S) : |S| ≥ i > |S| − (µ′1 + · · ·+ µ′|S|), S ⊆ {x1, . . . , xn}}

where µ′ = (0 ≤ µ′1 ≤ · · · ≤ µ′n) is the conjugate of the partition µ with zero parts

added whenever necessary, and ei(S) is the i-th elementary symmetric function in the

set S of variables. We can work over an arbitrary field F, and still denote by Jµ the

ideal of F[X] with the same generators.

Example 4.2.4. According to Example 3.4.3 and the proof of Proposition 3.4.2, if

µ = (1k, n − k) is a hook, then the ideal J1k,n−k is generated by e1, . . . , ek and all the

monomials xi1 · · ·xik+1
satisfying 1 ≤ i1 < · · · < ik+1 ≤ n.

Now we consider an arbitrary composition α = (α1, . . . , α`). The major index of α is

maj(α) :=
∑

i∈D(α) i, and viewing a partition µ as a composition one has maj(µ) = n(µ).

Recall that αc is the composition of n with D(αc) = [n− 1] \D(α), ←−α := (α`, . . . , α1),

and α′ :=
←−
αc = (←−α )c, whose ribbon diagram is the transpose of the ribbon α.

Bergeron and Zabrocki [8] introduced a noncommutative modified Hall-Littlewood

symmetric function

H̃α(x; t) :=
∑
β4α

tmaj(β)sβ inside NSym[t] (4.6)

and a (q, t)-analogue

H̃α(x; q, t) :=
∑
β|=n

tc(α,β)qc(α
′,
←−
β )sβ inside NSym[q, t] (4.7)

for every composition α, where sβ is the noncommutative ribbon Schur function indexed

by β defined in §2.6 and c(α, β) :=
∑

i∈D(α)∩D(β) i. In Corollary 3.4.5 we gave a partial

representation theoretic interpretation of H̃α(x; t) when α = (1k, n−k) is a hook, using

the Hn(0)-action on the polynomial ring F[X] by the Demazure operators.

Now we switch to the Stanley-Reisner ring F[Bn] and provide a complete represen-

tation theoretic interpretation for H̃α(x; t) and H̃α(x; q, t). Recall that tS means the

product of ti for all elements i in a multiset S ⊆ [n− 1], with repetitions included.

Theorem 4.2.5. Let α be a composition of n, and let Iα be the ideal of F[Bn] generated

by

Θα := {θi : i ∈ D(α) ∪ {n}} and {yA ⊆ [n] : |A| /∈ D(α) ∪ {n}}.
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Then one has an isomorphism F[Bn]/Iα ∼= F[Bα]/(Θα) of multigraded F-algebras, Sn-

modules, and Hn(0)-modules. In addition, the multigraded noncommutative character-

istic of F[Bn]/Iα equals

H̃α(x; t1, . . . , tn−1) :=
∑
β4α

tD(β)sβ inside NSym[t1, . . . , tn−1].

Proof. In §4.1.3 we defined a projection φα : F[Bn] � F[Bα] which induces an isomor-

phism

F[Bn]/(A ⊆ [n] : |A| /∈ D(α) ∪ {n}) ∼= F[Bα]

of multigraded F-algebras and Sn-modules. By definition, the Hn(0)-action also pre-

serves φα. Since the actions of Sn and Hn(0) are both Θα-linear, we can take a

further quotient by the ideal generated by Θα and obtain the desired isomorphism

F[Bn]/Iα ∼= F[Bα]/(Θα) of multigraded F-algebras, Sn-modules, and Hn(0)-modules.

Since F[Bα]/(Θα) has an F-basis of the descent monomials Yw for all w ∈ Sα, it

equals the direct sum of Qβ, the F-span of {Yw : D(w) = D(β)}, for all β4α; each Qβ

has homogeneous multigrading tD(β). The projective indecomposable Hn(0)-module

Pβ = Hn(0)πw0(β)πw0(βc) has an F-basis{
πwπw0(βc) : D(w) = D(β)

}
.

Thus one has an vector space isomorphism Qβ ∼= Pβ via Yw 7→ πwπw0(βc). We want to

show that this isomorphism is Hn(0)-equivariant. Let i ∈ [n− 1] be arbitrary. Suppose

that D(w) = D(β), and let M be the chain of the sets {w(1), . . . , w(j)} for all j ∈ D(w).

Then α(M) = β and σ(M) = w. We distinguish three cases below and use (4.1).

If pi(M) > pi+1(M), i.e. i ∈ D(w−1), then one has πi(Yw) = −Yw and πiπwπw0(βc) =

−πwπw0(βc).

If pi(M) = pi+1(M), i.e. i /∈ D(w−1) and D(siw) 6⊆ D(β), then πi(Yw) = 0 and

there exists j ∈ D(siw)\D(β) such that πiπwπw0(βc) = πwπjπw0(βac) = 0 since πjπj = 0.

If pi(M) < pi+1(M), i.e. i /∈ D(w−1) and D(siw) ⊆ D(β), then πi(Yw) = ysiw and

πiπwπw0(βc) = πsiwπw0(βc).

Therefore Qβ ∼= Pβ is an isomorphism of Hn(0)-modules for all β4α. It fol-

lows that the multigraded noncommutative characteristic of F[Bn]/Iα ∼= F[Bα]/(Θα)

is H̃α(x; t1, . . . , tn−1).
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It is easy to see H̃α(x; t) = H̃α(x; t, t2, . . . , tn−1). Thus Theorem 4.2.5 provides a

representation theoretic interpretation of H̃α(x; t) for all compositions α, and can be

viewed as a noncommutative analogue of Theorem 3.4.1.

Remark 4.2.6. The proof of Theorem 4.2.5 is actually simpler than the proof of our

partial interpretation Corollary 3.4.5 for H̃α(x; t). This is because πi sends a descent

monomial in F[Bn] to either 0 or ±1 times a descent monomial, but sends a descent

monomial in F[X] to a polynomial in general (whose leading term is still a descent

monomial). We view the Stanley-Reisner ring F[Bn] (or F[B∗n] ∼= F[Bn]/(∅)) as a q = 0

analogue of the polynomial ring F[X]. For an odd (i.e. q = −1) analogue, see Lauda

and Russell [44].

Remark 4.2.7. When α = (1k, n − k) is a hook, one can check that the ideal I1k,n−k

of F[Bn] has generators θ1, . . . , θk and all yA with A ⊆ [n] and |A| /∈ [k]. One can also

check that the images of these generators under the transfer map τ are the Tanisaki

generators for the ideal J1k,n−k of F[X], although τ(I1k,n−k) 6= J1k,n−k.

Remark 4.2.8. One sees that the coinvariant algebra F[Bn]/(Θ) carries the regular rep-

resentation of Hn(0), as its multigraded noncommutative characteristic equals

H̃1n(x; t1, . . . , tn−1) :=
∑
β|=n

tD(β)sβ.

If we take ti = ti for all i ∈ D(α), and ti = qn−i for all i ∈ D(αc) in H̃1n(x; t1, . . . , tn−1),

then we obtain the (q, t)-analogue H̃α(x; q, t) from (4.7).

Hivert, Lascoux, and Thibon [30] defined a family of noncommutative symmetric

functions on multiple parameters qi and ti, which are similar to but different from the

family
{

H̃α(x; q, t)
}

. A common generalization of these two families of noncommuta-

tive symmetric functions was discovered recently by Lascoux, Novelli, and Thibon [42],

namely a family {Pα} of noncommutative symmetric functions having parameters asso-

ciated with paths in binary trees.

In fact, one recovers Pα from H̃1n(x; t1, . . . , tn−1), the noncommutative characteristic

of the coinvariant algebra F[Bn]/(Θ). For any composition α of n, let u(α) = u1 · · ·un−1

be the Boolean word such that ui = 1 if i ∈ D(α) and ui = 0 otherwise. Let yu1...i be

a parameter indexed by the Boolean word u1 · · ·ui. It follows from the definition of
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Pα [42, (31)] that

Pα =
∑
β|=n

 ∏
i∈D(β)

yu1...i

 sβ.

Then taking ti = yu1...i one has H̃1n(x; yu1...1 , . . . , yu1...n−1) = Pα. For example, when

α = 211 one has u(α) = 011 and

H̃1111(x; y0, y01, y011) = s4 + y011s31 + y01s22 + y01y011s211 + y0s13

+ y0y011s121 + y0y01s112 + y0y01y011s1111 = P211.

4.2.4 Properties of Hα(x; t1, . . . , tn−1)

The multigraded noncommutative characteristic H̃α(x; t1, . . . , tn−1), where α |= n, is

the modified version of

Hα = Hα(x; t1, . . . , tn−1) :=
∑
β4α

tD(α)\D(β)sβ

which is a multivariate noncommutative analogue of the Hall-Littlewood symmetric

functions inside NSym[t1, . . . , tn−1]. We show below that these functions satisfy similar

properties to those given in [8] for Hα(x; t); taking ti = ti for all i ∈ [n−1] one recovers

the corresponding results in [8].

It is easy to see Hα(0, . . . , 0) = sα and Hα(1, . . . , 1) = hα. Let NSymn be the n-th

homogeneous component of NSym, which has bases {sα : α |= n} and {hα : α |= n}.
Then {Hα : α |= n} gives a basis for NSymn[t1, . . . , tn−1], since Hα has leading term

sα under the partial order 4 for compositions of n. It follows that
⊔
n≥0{Hα : α |= n}

is a basis for NSym[t1, t2, . . .].

Bergeron and Zabrocki [8] defined an inner product on NSym such that the basis

{sα} is “semi-self dual”, namely 〈sα, sβ〉 := (−1)|α|+`(α)δα, βc where δ is the Kronecker

delta. They showed that the same result holds for {hα} and {Hα(x; t)}. Here we prove

a multivariate version.

Proposition 4.2.9. One has 〈Hα,Hβ〉 = (−1)|α|+`(α)δα, βc for any pair of compositions

α and β.
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Proof. By definition, one has

〈Hα,Hβ〉 =
∑
α′4α

tD(α)\D(α′)
∑
β′4β

tD(β)\D(β′)〈sα′ , sβ′〉.

If |α| 6= |β| then 〈sα′ , sβ′〉 = 0 for all α′4α and β′4β. Assume |α| = |β| = n below.

If D(α) ∪D(β) 6= [n− 1] then again one has 〈sα′ , sβ′〉 = 0 for all α′4α and β′4β.

If α = βc then the right hand side contains only one nonzero term 〈sα, sβ〉.
If D(α) ∩D(β) 6= ∅ then taking E = D(α) \D(α′) we write the right hand side as∑

E⊆D(α)∩D(β)

(−1)n+`(α)−|E| tD(α)∩D(β) = 0.

This completes the proof.

We also give a product formula for {Hα}, generalizing the product formula for

{Hα(x; t)} given by Bergeron and Zabrocki [8]. Recall from 2.7 that

sαsβ = sαβ + sαBβ

for all compositions α and β, where

αβ := (α1, . . . , α`, β1, . . . , βk),

αB β := (α1, . . . , α`−1, α` + β1, β2, . . . , βk).

Proposition 4.2.10. For any compositions α and β, one has the product formula

Hα ·Hβ =
∑
γ4β

 ∏
i∈D(β)\D(γ)

(ti − t|α|+i)

(Hαγ + (1− t|α|)HαBγ
)
.

Proof. Let γ4β. If δ4αγ then there exists a unique pair of compositions α′4α and

γ′4γ such that δ = α′γ′ or δ = α′ B γ′. If δ4α B γ then there exists a unique pair of

compositions α′4α and γ′4γ such that δ = α′ B γ′. Thus

Hαγ + (1− t|α|)HαBγ =
∑
α′4α
γ′4γ

(
tD(αγ)\D(α′γ′)sα′γ′ + tD(αγ)\D(α′Bγ′)sα′Bγ′

+ (1− t|α|) tD(αBγ)\D(α′Bγ′)sα′Bγ′
)
.
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Since D(αγ) = D(αBγ)t{|α|} and D(αγ)\D(α′γ′) = D(αBγ)\D(α′Bγ′), it follows

that

Hαγ + (1− t|α|)HαBγ =
∑
α′4α
γ′4γ

tD(αγ)\D(α′γ′)(sα′γ′ + sα′Bγ′).

Note that sα′γ′ + sα′Bγ′ = sα′sγ′ , and

D(αγ) \D(α′γ′) = (D(α) \D(α′)) t { |α|+ i : i ∈ D(γ) \D(γ′)}.

Thus the right hand side of the product formula equals

∑
α′4α
γ′4β

tD(α)\D(α′)sα′sγ′
∑

γ′4γ4β

 ∏
i∈D(β)\D(γ)

(ti − t|α|+i)

 t|α|+D(γ)\D(γ′)

where t|α|+S :=
∏
i∈S t|α|+i. Since the interval [γ′, β] is isomorphic to the Boolean

algebra of the subsets of D(β) \D(γ′), one sees that

∑
γ′4γ4β

 ∏
i∈D(β)\D(γ)

(ti − t|α|+i)

 t|α|+D(γ)\D(γ′) = tD(β)\D(γ′).

Therefore the right-hand side of the product formula is equal to∑
α′4α

tD(α)\D(α′)sα′
∑
γ′4β

tD(β)\D(γ′)sγ′ = Hα ·Hβ.

The proof is complete.

Remark 4.2.11. One recovers the product formula sαsβ = sαβ + sαBβ from the above

proposition by using sα = Hα(x; 0, . . . , 0) and sβ = Hβ(x; 0, . . . , 0).

Corollary 4.2.12. Let α and β be two compositions. Then

Hα(x; t1, . . . , tn−1)Hβ(x; t|n) = Hαβ(t|n)

where n = |α| and t|n := {t1, . . . , tn−1, 1, t1, . . . , tn−1, 1, . . .}. In particular, if ζ is an

n-th root of unity then Hα(x; ζ)Hβ(x; ζ) = Hαβ(x; ζ) (see Bergeron and Zabrocki [8]).

Proof. The result follows immediately from the above proposition.
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4.2.5 Quasisymmetric characteristic

In this subsection we use the two encodings given in §4.1.2 for the multichains in Bn to

study the quasisymmetric characteristic of the Stanley-Reisner ring F[Bn].

Lemma 4.2.13. Let α be a weak composition of n. Then the α-homogeneous component

F[Bn]α of the Stanley-Reisner ring F[Bn] is an Hn(0)-submodule of F[Bn] with homoge-

neous multigrading tD(α) and isomorphic to the cyclic module Hn(0)πw0(αc), where αc

is the composition of n with descent set [n− 1] \D(α).

Proof. It is not hard to check that Hn(0)πw0(αc) has an F-basis {πwπw0(αc) : w ∈ Sα}.
For any w ∈ Sα, the Hn(0)-action is given by

πiπwπw0(αc) =


−πwπw0(αc) if i ∈ D(w−1),

0, if i /∈ D(w−1), siw /∈ Sα,

πsiwπw0(αc), if i /∈ D(w−1), siw ∈ Sα.

On the other hand, if M is a multichain of Bn with α(M) = α, then one has

r(M) = D(α) and σ(M) ∈ Sα. It follows from (4.1) that F[Bn]α ∼= Hn(0)πw0(αc) via

yM 7→ πσ(M)πw0(αc).

Since every homogeneous component F[Bn]α is a cyclic multigraded Hn(0)-module,

we get an N× Nn+1-multigraded quasisymmetric characteristic

Chq,t(F[Bn]α) =
∑
w∈Sα

qinv(w)tD(α)FD(w−1) (4.8)

where q keeps track of the length filtration and t keeps track of the multigrading of

F[Bn]α. This defines an N × Nn+1-multigraded quasisymmetric characteristic for the

Stanley-Reisner ring F[Bn].

Theorem 4.2.14. The N×Nn+1-multigraded quasisymmetric characteristic of F[Bn] is

Chq,t(F[Bn]) =
∑
k≥0

∑
α∈Com(n,k+1)

tD(α)
∑
w∈Sα

qinv(w)FD(w−1)

=
∑
w∈Sn

qinv(w)tD(w)FD(w−1)∏
0≤i≤n(1− ti)

=
∑
k≥0

∑
p∈[k+1]n

tp′1 · · · tp′kq
inv(p)FD(p).
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Proof. The first expression of Chq,t(F[Bn]) follows immediately from (4.8).

To see the second expression, recall that F[Bn] is a free F[Θ]-module on the descent

basis {Yw : w ∈ Sn}, and the Hn(0)-action on F[Bn] is F[Θ]-linear. If a0, . . . , an are

nonnegative integers and M is a multichain in Bn, then one sees that θa00 · · · θann yM

is the sum of y
M
′ for all the multichains M ′ refining M and having rank multiset

r(M ′) = r(M) ∪ {0a0 , . . . , nan}. Thus for any w ∈ Sn, the element θa00 · · · θann Yw has

leading term ∏
i∈D(w)∪{0a0 ,...,nan}

y{w(1),...,w(i)}.

It follows that θa00 · · · θann Yw has length-grading qinv(w). Then one has

Chq,t (F[Bn]) = Hilb (F[Θ]; t)
∑
w∈Sn

qinv(w)tD(w)FD(w−1)

=
∑
w∈Sn

qinv(w)tD(w)FD(w−1)∏
0≤i≤n(1− ti)

.

Finally we encode a multichain M of length k in Bn by p(M) = p ∈ [k + 1]n. The

Hn(0)-action in terms of this encoding is equivalent to the first one via (4.1). One has

D(α(M)) equals the multiset of p′1, . . . , p
′
k and inv(σ(M)) = inv(p(M)). Hence we get

the third expression of Chq,t(F[Bn]).

4.2.6 Applications to permutation statistics

We explain here how Theorem 4.2.14 specializes to a result of Garsia and Gessel [25, The-

orem 2.2] on the multivariate generating function of the permutation statistics inv(w),

maj(w), des(w), maj(w−1), and des(w−1) for all w ∈ Sn. First recall that

Fα =
∑

i1≥···≥in≥1
i∈D(α)⇒ij>ij+1

xi1 · · ·xin , ∀α |= n.

Given a nonnegative integer `, let psq;` be the linear transformation from formal power

series in x1, x2, . . . to formal power series in q, defined by psq;`(xi) = qi−1 for i = 1, . . . , `,

and psq;`(xi) = 0 for all i > `; similarly, psq;∞ is defined by psq;∞(xi) = qi−1 for all

i = 1, 2, . . .. It is well known (see Stanley [56, Lemma 7.19.10]) that

psq;∞(Fα) =
qmaj(α)

(1− q) · · · (1− qn)
.
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Let (u; q)n := (1 − u)(1 − qu)(1 − q2u) · · · (1 − qnu). It is also not hard to check (see

Gessel and Reutenauer [28, Lemma 5.2]) that∑
`≥0

u`psq;`+1(Fα) =
qmaj(α)udes(α)

(u; q)n
.

A bipartite partition is a pair of weak compositions λ = (λ1, . . . , λn) and µ =

(µ1, . . . , µn) satisfying the conditions λ1 ≥ · · · ≥ λn and λi = λi+1 ⇒ µi ≥ µi+1 (so the

pairs of nonnegative integers (λ1, µ1), . . . , (λn, µn) are lexicographically ordered). Let

B(`, k) be the set of bipartite partitions (λ, µ) such that max(λ) ≤ ` and max(µ) ≤ k,

where max(µ) := max{µ1, . . . , µn} and similarly for max(λ).

Corollary 4.2.15 (Garsia and Gessel [25]).∑
w∈Sn q

inv(w)
0 q

maj(w−1)
1 u

des(w−1)
1 q

maj(w)
2 u

des(w)
2

(u1; q1)n(u2; q2)n
=
∑
`,k≥0

u`1u
k
2

∑
(λ,µ)∈B(`,k)

q
inv(µ)
0 q

|λ|
1 q
|µ|
2 .

Proof. Theorem 4.2.14 gives the equality

∑
w∈Sn

q
inv(w)
0 tD(w)FD(w−1)∏

0≤i≤n(1− ti)
=
∑
k≥0

∑
p∈[k+1]n

tp′1 · · · tp′kq
inv(p)
0 FD(p). (4.9)

Applying the linear transformation
∑

`≥0 u
`
1psq1;`+1 and also the specialization ti = qi2u2

for i = 0, 1, . . . , n to this equality, we obtain∑
w∈Sn q

inv(w)
0 q

maj(w−1)
1 u

des(w−1)
1 q

maj(w)
2 u

des(w)
2

(u1; q1)n(u2; q2)n

=
∑
k≥0

uk2
∑

p∈[k+1]n

q
p′1+···p′k
2 q

inv(p)
0

∑
`≥0

u`1
∑

`≥λ1≥···≥λn≥0
j∈D(p)⇒λj>λj+1

qλ1+···+λn
1 .

Note that p ∈ [k+1]n if and only if µ := (k+1−p1, . . . , k+1−pn) is a weak composition

with max(µ) ≤ k, and one has |µ| = p′1 + · · ·+ p′k by the definition of p′i. The condition

j ∈ D(p) ⇒ λj > λj+1 is equivalent to λi = λi+1 ⇒ µi ≥ µi+1. Thus we can rewrite

the right hand side as a sum over (λ, µ) ∈ B(`, k) for all `, k ≥ 0, and then the result

follows easily.

Taking q0 = 1 in Theorem 4.2.14 one has the usual Nn+1-multigraded quasisymmet-

ric characteristic Cht(F[Bn]). Then applying the same specialization as in the proof of
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the above corollary, and using the observation

∑
(λ,µ)∈B(`,k)

q
|λ|
1 q
|µ|
2 =

∏
0≤i≤`

∏
0≤j≤k

1

1− zqi1q
j
2

∣∣∣∣∣
zn

where f |zn is the coefficient of zn in f , one can get another result of Garsia and Ges-

sel [25]:∑
w∈Sn q

maj(w−1)
1 u

des(w−1)
1 q

maj(w)
2 u

des(w)
2

(u1; q1)n(u2; q2)n
=
∑
`,k≥0

u`1u
k
2

∏
0≤i≤`

∏
0≤j≤k

1

1− zqi1q
j
2

∣∣∣∣∣
zn

.

A further specialization of Theorem 4.2.14 gives a well known result which is often

attributed to Carlitz [13] but actually dates back to MacMahon [45, Volume 2, Chapter

4].

Corollary 4.2.16 (MacMahon-Carlitz). Let [k + 1]q := 1 + q + q2 + · · ·+ qk. Then∑
w∈Sn q

maj(w)udes(w)

(u; q)n
=
∑
k≥0

([k + 1]q)
nuk.

Proof. Taking q0 = 1, ti = qiu for all i = 0, 1, . . . , n, and FI = 1 for all I ⊆ [n − 1] in

(4.9, we get ∑
w∈Sn q

maj(w)udes(w)

(u; q)n
=
∑
k≥0

uk
∑

p∈[k+1]n

qp
′
1+···+p′k .

Then using Equation (4.2) we establish this corollary.

Theorem 4.2.14 also implies the following result, which was obtained by Adin, Brenti,

and Roichman [1] from the Hilbert series of the coinvariant algebra F[X]/(F[X]Sn+ ).

Corollary 4.2.17 (Adin, Brenti, and Roichman [1]). Let Par(n) be the set of all weak

partitions λ = (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn ≥ 0, and let m(λ) = (m0(λ),m1(λ), . . .),

where

mj(λ) := #{1 ≤ i ≤ n : λi = j}.

Then ∑
λ∈Par(n)

(
n

m(λ)

) n∏
i=1

qλii =

∑
w∈Sn

∏
i∈D(w) q1 · · · qi

(1− q1)(1− q1q2) · · · (1− q1 · · · qn)
.
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Proof. Recall that the rank-selected Boolean algebra B∗n consists of nonempty subsets

of [n], and one has an isomorphism F[B∗n] ∼= F[Bn]/(∅) of F-algebras.

Given an integer k ≥ 0, the multichains M = (A1 ⊆ · · · ⊆ Ak) with A1 6= ∅ are

in bijection with the pairs (α(M), σ(M)) of α(M) ∈ Com1(n, k + 1) and σ(M) ∈ Sα,

where

Com1(n, k + 1) := {(α1, . . . , αk+1) ∈ Com(n, k + 1) : α1 ≥ 1}.

Hence the proof of Theorem 4.2.14 implies that

Cht(F[B∗n]) =
∑
k≥0

∑
α∈Com1(n,k+1)

tD(α)
∑
w∈Sα

FD(w−1)

=

∑
w∈Sn t

D(w)FD(w−1)∏
1≤i≤n(1− ti)

.

Taking ti = q1 · · · qi for i = 1, . . . , n, and FD(w−1) = 1 for all w ∈ Sn, we obtain

∑
k≥0

∑
α∈Com1(n,k+1)

(
n

α

) ∏
i∈D(α)

q1 · · · qi =

∑
w∈Sn

∏
i∈D(w) q1 · · · qi

(1− q1) · · · (1− q1 · · · qn)
.

Thus it remains to show∑
λ∈Par(k,n)

(
n

m(λ)

) n∏
i=1

qλii =
∑

α∈Com1(n,k+1)

(
n

α

) ∏
j∈D(α)

q1 · · · qj

where Par(k, n) := {(λ1, . . . , λn) ∈ Par(n) : λ1 = k}, for all k ≥ 0. This can be

established by using the bijection λ 7→ α(λ) := (mk(λ), . . . ,m0(λ)) between Par(k, n)

and Com1(n, k + 1). One sees that the multiset D(α(λ)) is precisely the multiset of

column lengths of the Young diagram of λ, and thus

λi = #{j ∈ D(α(λ)) : j ≥ i}, ∀i ∈ [n].

This completes the proof.

4.3 Remarks and questions for future research

4.3.1 Connection with the polynomial ring

We give in §4.1.3 an analogy via the transfer map τ between the rank-selected Stanley-

Reisner ring F[B∗n] as a multigraded algebra and Sn-module and the polynomial ring
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F[X] as a graded algebra and Sn-module. With our Hn(0)-action on F[B∗n] and the usual

Hn(0)-action on F[X], the transfer map τ is not an isomorphism of Hn(0)-modules: e.g.

for n = 2 one has τ(y2
1) = x2

1 but

π1(y2
1) = y2

2, π1(x2
1) = x2

2 + x1x2 6= x2
2 = τ(y2

2).

However, there is still a similar analogy between the multigraded Hn(0)-module

F[B∗n] and the graded Hn(0)-module F[X]. In fact, Theorem 4.2.5 and Theorem 4.2.14

imply

cht(F[B∗n]) =

∑
α|=n t

D(α)sα∏
1≤i≤n(1− ti)

,

Chq,t(F[B∗n]) =

∑
w∈Sn q

inv(w)tD(w)FD(w−1)∏
1≤i≤n(1− ti)

.

They specialize to the graded noncommutative characteristic and bigraded quasisym-

metric characteristic of F[X] via ti = ti for i = 1, . . . , n, as it follows from results in the

previous chapter that

cht(F[X]) =

∑
α|=n t

maj(α)sα∏
1≤i≤n(1− ti)

,

Chq,t(F[X]) =

∑
w∈Sn q

inv(w)tmaj(w)FD(w−1)∏
1≤i≤n(1− ti)

.

This suggests an isomorphism F[B∗n] ∼= F[X] of graded Hn(0)-modules. To explicitly

give such an isomorphism, we consider every α-homogeneous component of F[B∗n], which

has a basis πw
 ∏
i∈D(α)

y{1,...,i}

 : w ∈ Sα

 .

Recall that xI :=
∏
i∈I x1 · · ·xi for all I ⊆ [n]. By sending the above basis to the

set
{
πwxD(α) : w ∈ Sα

}
which is triangularly related to

{
wxD(α) : w ∈ Sα

}
(see the

previous chapter), one has the desired isomorphism.

4.3.2 Tits Building

Let ∆(G) be the Tits building of the general linear group G = GL(n,Fq) and its usual

BN-pair over a finite field Fq; see e.g. Björner [9]. The Stanley-Reisner ring F[∆(G)]

is a q-analogue of F[Bn]. The nonzero monomials in F[∆(G)] are indexed by multiflags
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of subspaces of Fnq , and there are qinv(w) many multiflags corresponding to a given

multichain M in Bn, where w = σ(M). Can one obtain the multivariate quasisymmetric

function identities in Theorem 4.2.14 by defining a nice Hn(0)-action on F[∆(G)]?



Chapter 5

Hecke algebra action on the

Stanley-Reisner ring of the

Coxeter complex

In the previous chapter we defined an action of the 0-Hecke algebra Hn(0) of Sn on

the Stanley-Reisner ring of the Boolean algebra. In this chapter we generalize it in two

directions, 0→ q and Sn →W , by defining an action of the Hecke algebra HW (q) of a

finite Coxeter group W on the Stanley-Reisner ring of the Coxeter complex of W .

5.1 Stanley-Reisner ring of the Coxeter complex

In §2.2 we provided the definitions for the Stanley-Reisner ring of a simplicial complex

and the Coxeter complex ∆(W ) of a finite Coxeter system (W,S). See Björner [9] and

Garsia-Stanton [27] for more background information.

The Stanley-Reisner ring F[∆(W )] has an F-basis of all nonzero monomials. If

m = v1 · · · vk is a nonzero monomial, then supp(m) = wWJ for some w ∈W J , where J

is the underlying set of the rank multiset r(m). There is a natural W -action on F[∆(W )]

by w(m) := w(v1) · · ·w(vk) for all w ∈ W . This action preserves the multigrading of

F[∆(W )], and is transitive on every homogeneous component of F[∆(W )]. Let Θ be the

76
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set of the rank polynomials

θi =
∑

w∈W ic

wWic , i = 1, . . . , d.

The W -action is Θ-linear and leaves the polynomial algebra F[Θ] invariant.

Proposition 5.1.1 (c.f. Garsia and Stanton [27]). The invariant algebra F[∆]W equals

F[Θ].

Proof. It suffices to show F[∆(W )]W ⊆ F[Θ]. The W -action on F[∆(W )] breaks up the

set of nonzero monomials into orbits, and the orbit sums form an F-basis for F[∆(W )]W .

The W -orbit of a nonzero monomial with rank multiset {1a1 , . . . , dad} consists of all

monomials with the same rank multiset, and hence the corresponding orbit sum equals

θa11 · · · θ
ad
d .

Let J ⊆ S. The rank-selected subcomplex ∆J(W ) has chambers wWJc for all w

in W Jc . A shelling order is obtained from any linear extension of the weak order on

W Jc , and the restriction map is given by RJ(wWJc) = wWD(w)c for all w in W Jc . The

W -action on ∆(W ) restricts to ∆J(W ), inducing a W -action on the Stanley-Reisner

ring F[∆J(W )]. Let ΘJ := {θj : j ∈ J}. Then Theorem 2.2.2 implies that F[∆J(W )] is

a free F[ΘJ ]-module with a basis of the descent monomials

wWD(w)c =
∏

i∈D(w)

wWic , ∀w ∈W Jc .

The W -action on F[∆J(W )] is ΘJ -linear, and thus descends to the quotient algebra

F[∆J(W )]/(ΘJ).

5.2 Hecke algebra action

Suppose that F is an arbitrary field, q is an indeterminate, and (W,S) is a finite Cox-

eter system with S = {s1, . . . , sd}. We define an action of the Hecke algebra of W

on the Stanley-Reisner ring F(q)[∆(W )] of the Coxeter complex ∆(W ) of W , so that

F(q)[∆(W )] becomes a multigraded HW (q)-module.
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First recall from §2.4 that for every J ⊆ S, the parabolic subalgebra HW,J(q) is

generated by {Tj : sj ∈ J}, and acts trivially on the element

σJ :=
∑
w∈WJ

Tw.

by

TwσJ = q`(w)σJ , ∀w ∈WJ .

The induction of HW,J(q)σJ to HW (q) gives the parabolic representation HW (q)σJ ,

which has an F(q)-basis {TwσJ : w ∈W J}.
Let m be a nonzero monomial in F(q)[∆(W )] with supp(m) = wWJ , where w ∈W J .

We define

Ti(m) :=


(q − 1)m+ qsi(m), if i ∈ D(w−1),

qm, if i /∈ D(w−1), siw /∈W J ,

si(m), if i /∈ D(w−1), siw ∈W J .

(5.1)

This gives an HW (q)-action on F(q)[∆(W )] preserving the multigrading, according to

the following result.

Proposition 5.2.1. Let I be a multiset with underlying set Jc ⊆ [d]. Then the homo-

geneous component of F(q)[∆(W )] indexed by I is isomorphic to the parabolic represen-

tation HW (q)σJ .

Proof. Recall that the parabolic representation HW (q)σJ has a basis {TwσJ : w ∈W J}.
On the other hand, the homogeneous component of F(q)[∆(W )] indexed by I has a

natural basis of all nonzero monomials m with r(m) = I, and any such monomial m has

supp(m) = wWJ for some w ∈W J , since Jc is the underlying set of I. Thus we obtain

a vector space isomorphism by sending m to Tσ(m)σJ for all nonzero monomials m with

r(m) = J̄ . This isomorphism is HW (q)-equivariant by the following observations.

If i ∈ D(w−1), then D(siw) ⊆ D(w) ⊆ Jc and TiTwσJ = ((q − 1)Tw + qTsiw)σJ .

If i /∈ D(w−1) and siw /∈ W J , then siw = wsj for some j ∈ J by Lemma 2.1.1, and

thus TiTwσJ = TwTjσJ = qTwσJ .

If i /∈ D(w−1) and siw ∈W J , then TiTwσJ = TsiwσJ .
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Specializing q = 0 we get an HW (0)-action on F[∆(W )] by the operators πi := Ti|q=0.

One directly verifies Ti = qsi + (1− q)πi for all i ∈ [d].

Proposition 5.2.2. The actions of W and HW (0) on F[∆(W )] satisfy the relations

πisi = −πi, siπi = πi + 1− si, 1 ≤ i ≤ n− 1.

Proof. Using Ti = qsi + (1− q)πi one sees that (Ti + 1)(Ti − q) = 0 holds if and only if

(q2 − q)(πisi + siπi + si − 1) = 0.

Here q is an indeterminate. Thus it suffices to show πisi = −πi. Let m be a nonzero

monomial in F[∆(W )] with supp(m) = wWJ where J ⊆ S and w ∈W J .

If i ∈ D(w−1) then πi(m) = −m and supp(si(m)) = siwWJ with siw ∈W J . Thus

πisi(m) = s2
i (m) = m = −πi(m).

If i /∈ D(w−1) and siw /∈W J , then πi(m) = 0 and si(m) = m. Hence

πisi(m) = 0 = −πi(m).

If i /∈ D(w−1) and siw ∈W J , then πi(m) = si(m) and thus

πisi(m) = π2
i (m) = −πi(m).

The proof is complete.

5.3 Invariants and coinvariants

The trivial representation of HW (q) is a one-dimensional F(q)-space on which Tw acts

by q`(w) for all w ∈ W ; it is a well defined HW (q)-module by the defining relations for

HW (q). We define the invariant algebra of the HW (q)-action on F(q)[∆(W )] to be the

trivial isotypic component

F(q)[∆(W )]HW (q) := {f(q) ∈ F[∆(W )] : Ti(f) = qf, ∀i ∈ [d]} .

Although not a priori obvious, we show below that it is indeed an algebra.

Proposition 5.3.1. If q is an indeterminate or q ∈ F then F(q)[∆(W )]HW (q) = F(q)[Θ].
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Proof. For j = 1, 2, 3 let Mj be the set of nonzero monomials in the j-the case of the

definition (5.1) of the HW (q)-action. Let i ∈ [d]. Then si pointwise fixes M2 and

bijectively sends M1 to M3. Hence every element in F(q)[∆(W )] can be written as

f =
∑

m∈M1

(cmm+ csimsim) +
∑

m∈M2

cmm.

It follows that

Ti(f)− qf =
∑

m∈M1

((csim − cm)m+ q(cm − csim)sim) .

This shows that Ti(f) = qf if and only if csim = cm for all m ∈ M1 if and only if

si(f) = f . Hence F(q)[∆(W )]HW (q) = F(q)[∆(W )]W = F(q)[Θ] by Proposition 5.1.1.

Remark 5.3.2. One has another proof by applying si to Ti(f) = qf and using the relation

siπi = πi + 1− si to get si(f) = f , as long as q 6= −1.

Thus the quotient algebra F(q)[∆(W )]/(Θ) can be viewed as the coinvariant algebra

of the HW (q)-action on F(q)[∆(W )]. It inherits the multigrading of F(q)[∆(W )] since

the ideal (Θ) is homogeneous. We prove below that the operators Ti are Θ-linear, and

thus apply to F(q)[∆(W )]/(Θ).

Proposition 5.3.3. The HW (q)-action on F(q)[∆(W )] is Θ-linear if q is an indeter-

minate or q ∈ F.

Proof. Fix an i ∈ [d]. Since Ti = qsi + (1 − q)πi and si is Θ-linear, it suffices to show

that πi is Θ-linear. Let m be a nonzero monomial in F[∆(W )] with supp(m) = wWJ ,

where J ⊆ S and w ∈ W J . We need to show πi(θjm) = θjπi(m) for all j. It follows

from the definition of θj that

θjm =
∑

u∈W (j,m)

uWjc ·m

where W (j,m) := {u ∈ W jc : uWjc ∩ wWJ 6= ∅}. For every u ∈ W (j,m), let z be the

shortest element in uWjc ∩ wWJ . Then one has

supp(uWjc ·m) = uWjc ∩ wWJ = zWJ\{j}, z ∈W J\{j}. (5.2)

By definition, the action of Ti on uWjc ·m depends on the following three cases:
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(i) i ∈ D(z−1),

(ii) i /∈ D(z−1) and D(siz) 6⊆ Jc ∪ {j},

(iii) i /∈ D(z−1) and D(siz) ⊆ Jc ∪ {j}.

This decomposes W (j,m) into a disjoint union of three subsets W1(j,m), W2(j,m), and

W3(j,m).

Now we distinguish three cases below.

Case 1: i ∈ D(w−1). Then πi(m) = −m. Let u ∈ W (j,m) and assume (5.2). Since

z ∈ wWJ and w ∈ W J , we have D(w−1) ⊆ D(z−1). Thus W (j,m) = W1(j,m) and

πi(θjm) = −θjm = θjπi(m).

Case 2: i /∈ D(w−1) and siw /∈ W J . Then siwWJ = wWJ , πi(m) = 0, and si(m) = m.

Again we let u ∈W (j,m) and assume (5.2).

If u ∈W1(j,m), i.e. i ∈ D(z−1), then D(siz) ⊆ D(z) ⊆ Jc ∪ {j} and

siuWjc ∩ wWJ = si(uWjc ∩ wWJ) = sizWJ\{j} 6= ∅.

Hence siu ∈W3(j,m) and πi(siuWjc ·m) = si(siuWjc ·m) = uWjc ·m.

Similarly, if u ∈W3(j,m) then siu ∈W1(j,m) and πi(uWjc ·m) = siuWjc ·m.

If u ∈W2(j,m) then πi(uWjc ·m) = 0. It follows that

πi(θjm) =
∑

u∈W3(j,m)

πi(1 + πi)(uWjc ·m) = 0 = θjπi(m).

Case 3: i /∈ D(w−1) and siw ∈W J . Then πi(m) = si(m). Let u ∈W (j,m) and assume

(5.2). Then z = wy for some y ∈WJ . Since siw ∈W J , one has

`(siz) = `(siw) + `(y) = 1 + `(w) + `(y) = 1 + `(z)

which implies i /∈ D(z−1). If siz /∈ W J then siwWJ = sizWJ = zWJ = wWJ by

Lemma 2.1.1, which leads us back to Case 2. Hence one has W (j,m) = W3(j,m) and

πi(θjm) = si(θjm) = θjsi(m) = θjπi(m).

Now we know that the coinvariant algebra F(q)[∆(W )]/(Θ) is a multigraded HW (q)-

module.
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Theorem 5.3.4. The coinvariant algebra F(q)[∆(W )]/(Θ) carries the regular represen-

tation of HW (q) if q is generic, i.e. if q is an indeterminate or q ∈ F\E for some finite

set E ( F.

Proof. It follows from Theorem 5.4.1 (to be proved in the next section) that setting

q = 0, the coinvariant algebra F[∆(W )]/(Θ) is isomorphic to the regular representation

of HW (0), i.e. the desired result holds for q = 0. Thus there exists an element f ∈
F[∆(W )] such that {πwf : w ∈ W} gives an F-basis for F[∆(W )]/(Θ). Then it suffices

to show that {Twf : w ∈W} gives an F(q)-basis for F(q)[∆(W )]/(Θ).

Let F[q][∆(W )] := F[∆(W )] ⊗ F[q] be the Stanley-Reisner ring of ∆(W ) over the

polynomial algebra F[q]. For any w ∈ W , the element Twf belongs to F[q][∆(W )]

and we identify it with its image in F[q][∆(W )]/(Θ). Then using the descent basis for

F[∆(W )]/(Θ) we obtain

Twf =
∑
u∈W

awu(q) · uWD(u)c inside F[q][∆(W )]/(Θ)

where auw(q) ∈ F[q] for all pairs of u,w ∈W . Thus A(q) := [auw]u,w∈W is the transition

matrix between the basis {uWD(u)c : u ∈ W} of descent monomials and the desired

basis {Twf : w ∈ W} for F(q)[∆(W )]/(Θ). It remains to show detA(q) 6= 0. But we

know detA(0) 6= 0 since {πwf : w ∈ W} gives an F-basis for F[∆(W )]/(Θ). Thus

detA(q) is a nonzero polynomial in F[q] which has only finitely many roots. It follows

that detA(q) 6= 0 if q is generic.

Remark 5.3.5. In those situations where Mathas’ decomposition (2.5) of HW (q) holds,

one has the following constructive proof for Theorem 5.3.4. By Proposition 5.2.1, the

cyclic HW (q)-module generated by

WJ =
∏
i∈Jc

Wic inside F(q)[∆(W )]

is isomorphic to HW (q)σJ . This induces an HW (q)-homomorphism

ψ : HW (q) =
⊕
J⊆S

ΠJ ↪→ F(q)[∆(W )]� F(q)[∆(W )]/(Θ).

By (2.4), we have an F(q)-basis for ψ(ΠJ) given byyu(q) =
∑

w∈WJc

(−q)`(w)TuwWJ : u ∈W, D(u) = Jc

 .
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Note that
{
yu(0) = uWD(u)c : u ∈W

}
is precisely the descent basis for F[∆(W )]/(Θ).

By the same technique used in the above proof of Theorem 5.3.4, we can show that if

q is generic then {yu(q) : u ∈W} gives an F(q)-basis for F(q)[∆(W )]/(Θ) and thus ψ is

an isomorphism of HW (q)-modules.

5.4 0-Hecke algebra action

Now we study the action of the 0-Hecke algebra HW (0) on the Stanley-Reisner ring

F[∆(W )] by the operators πi := Ti|q=0. Since this action preserves the rank of the

faces of ∆(W ), it restricts to the Stanley-Reisner ring F[∆J(W )] of the rank-selected

subcomplex ∆J(W ) of ∆(W ), giving F[∆J(W )] a multigraded HW (0)-module structure,

for all J ⊆ S.

Theorem 5.4.1. Let J ⊆ S and ΘJ := {θj : j ∈ J}. Then we have an HW (0)-module

decomposition

F[∆J(W )]/(ΘJ) =
⊕
I⊆J

NI

where NI is the F-span of {wWIc : D(w) = I} inside F[∆J(W )]/(ΘJ) for all I ⊆ J .

Moreover, each NI has homogeneous multigrading tI and is isomorphic to the projective

indecomposable HW (0)-module PI . In particular, we have an HW (0)-module isomor-

phism F[∆(W )]/(Θ) ∼= HW (0) for any field F.

Proof. By Theorem 2.2.2, {wWD(w)c : D(w) ⊆ J} gives an F-basis for F[∆J(W )]/(ΘJ).

Therefore F[∆J(W )]/(ΘJ) is a direct sum of NI for all I ⊆ J as an F-vector space.

Each NI is homogeneous with multigrading tI .

Taking q = 0 in Proposition 5.2.1 one has an HW (0)-module isomorphism from

the homogeneous component of F[∆(W )] indexed by I to the parabolic representation

HW (0)πw0(Ic) by sending wWIc to πwπw0(Ic) for all w ∈W with D(w) ⊆ I. This induces

the desired isomorphism NI
∼= PI of HW (0)-modules.

Finally in the special case of J = S one has an HW (0)-module decomposition of

F[∆(W )]/(Θ) which agrees with Norton’s decomposition ofHW (0). Hence F[∆(W )]/(Θ)

carries the regular representation of HW (0).
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5.5 Questions for future research

5.5.1 For which q is the coinvariant algebra regular?

As shown in Theorem 5.3.4, the coinvariant algebra F(q)[∆(W )]/(Θ) carries the regular

HW (q)-representation if q generic. It is interesting to study the following problem.

Problem. Determine the finitely many values of q for which F(q)[∆(W )]/(Θ) 6∼= HW (q).

For instance, Theorem 5.4.1 implies the isomorphism F[∆(W )]/(Θ) ∼= HW (0) for an

arbitrary field F.

Another example is for W = Sn and q = 1. By the discussion given in the end of

last chapter one has

cht(C[Bn]/(Θ)) = cht(C[X]/(C[X]Sn+ ))

where the first t is obtained from the specialization ti = ti for the Nn-multigrading of

C[Bn], and the second t keeps track of the degree grading of C[X].

This implies an isomorphism C[Bn]/(Θ) ∼= C[X]/(C[X]Sn+ ) of graded Sn-modules,

which shows that C[Bn]/(Θ) carries the regular representation of Sn. However, we do

not know any explicit construction of this isomorphism; in particular, it is not induced

by the transfer map τ , as τ does not send the ideal (Θ) to the ideal (C[X]Sn+ ) (e.g.

τ(θ1{1}) = x2
1 /∈ (C[X]Sn+ ) when n ≥ 3).

On the other hand, one sees that F[B2]/(θ1) is a direct sum of the trivial represen-

tation and the sign representation, and hence isomorphic to the regular representation

of S2 if and only if 2 - char(F).

5.5.2 Character formula

Adin, Postnikov, and Roichman [2] studied the Hn(q)-action (via Demazure operators)

on C(q)[X]/(C(q)[X]Sn+ ) and found a character formula for the k-th homogeneous com-

ponent using the basis of Schubert polynomials; the result is a sum of certain q-weights

of all permutations in Sn of length k.

Now we have an Hn(q)-action on C(q)[Bn]/(Θ). We do not know any analogue of the

Schubert polynomials in C(q)[Bn]/(Θ), but the descent basis for C(q)[Bn]/(Θ) behaves

nicely under the Hn(q)-action. Therefore we propose the following problem.
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Problem. Use the descent basis to find a character formula for the homogeneous com-

ponents of the Hn(q)-module C(q)[Bn]/(Θ), expressing it as a sum of some q-weights of

all permutations in Sn with a fixed major index.

More generally, given a finite Coxeter group W generated by S, it remains open to

study the multigraded HW (q)-module structure on F(q)[∆J(W )]/(ΘJ) for all J ⊆ S.

We only solved the specialization at q = 0 (see Theorem 5.4.1).

5.5.3 Gluing the group algebra and the 0-Hecke algebra

The group algebra FW of a finite Coxeter group W naturally admits both actions of

W and HW (0). Hivert and Thiéry [32] defined the Hecke group algebra of W by gluing

these two actions. In type A, one can also glue the usual actions of Sn and Hn(0) on

the polynomial ring F[X], but the resulting algebra is different from the Hecke group

algebra of Sn.

Now one has a W -action and an HW (0)-action on the Stanley-Reisner ring F[∆(W )].

What can we say about the algebra generated by the operators si and πi on F[∆(W )]?

Is it the same as the Hecke group algebra of W? If not, what properties (dimension,

bases, presentation, simple and projective indecomposable modules, etc.) does it have?
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