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Palindromic compositions

A composition of n is a sequence α = (α1, . . . , αℓ) of positive integers
with α1 + · · ·+ αℓ = n; the parts of α are α1, . . . , αℓ. There are 2n−1

compositions of n (↔ binary strings of length n ending with 1).

A composition (α1, . . . , αℓ) of n is palindromic if αi = αℓ+1−i for all
i = 1, . . . , ⌊ℓ/2⌋. The number of such compositions is pc(n) = 2⌊n/2⌋.

Andrews and Simay (2021) defined a composition α = (α1, . . . , αℓ) to
be parity palindromic if αi ≡ αℓ+1−i (mod 2) for all i .

Just (2021+) defined a composition α = (α1, . . . , αℓ) to be
palindromic modulo m if αi ≡ αℓ+1−i (mod m) for all i and found the
generating function for the number pc(n,m) of such compositions.
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More on palindromic compositions

Andrews and Simay (analytically), Just (bijectively), and Vatter
(recursively) proved that pc(2n, 2) = pc(2n + 1, 2) = 2 · 3n−1.

Just showed (analytically and bijectively) that pc(n, 3) = 2Fn−1 for all
n ≥ 2, where Fn is the Fibonacci number defined by F0 = 0, F1 = 1,
and Fn = Fn−1+Fn−2 for n ≥ 2, and briefly discussed the case m > 3.

Andrews, Just, and Simay (2022) defined a composition (α1, . . . , αℓ)
of n to be anti-palindromic if αi ̸= αℓ+1−i for all i = 1, 2, . . . , ⌊ℓ/2⌋
and showed that the number ac(n) of such compositions equals
Tn + Tn−2, where Tn is a tribonacci number defined by T0 = 0,
T1 = T2 = 1, and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.

We view all compositions partially (anti-)palindromic (modulo m) and
count them by the extent to which they are (anti-)palindromic.
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Motivation

A partition of n is a decreasing sequence λ = (λ1, . . . , λℓ) of positive
integers with size |λ| := λ1 + · · ·+ λℓ = n and parts λ1, . . . , λℓ.

Euler: The number of partitions of n into distinct parts equals the
number of partitions of n into odd parts.

Glaisher: The number of partitions of n with no part occurring ≥ k
times equals the number of partitions of n with no parts divisible by k.

Franklin: The number of partitions of n with m distinct parts each
occurring k or more times equals the number of partitions of n with
exactly m distinct parts divisible by k .

There are parallel results on compositions: The number of
compositions of n with odd parts and the number of compositions of
n+1 with parts greater than one are both Fn. This was generalized by
Munagi (2012) and further generalized by H. (2020).
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Partially (anti-)palindromic compositions

For n, k ≥ 0, let PCk(n) be the set of compositions (α1, . . . , αℓ) of n
with #{1 ≤ i ≤ ℓ/2 : αi ̸= αℓ+1−i} = k and let pck(n) := |PCk(n)|.

We have pck(n) = pck+(n) + pck−(n), where

pck+(n) := #{(α1, . . . , αℓ) ∈ PCk(n) : 2 | ℓ or 2 | α(ℓ+1)/2},
pck−(n) := #{(α1, . . . , αℓ) ∈ PCk(n) : 2 ∤ ℓ and 2 ∤ α(ℓ+1)/2}.

Example: pc1+(4) = |{31, 13}| = 2 and pc1−(4) = {211, 112}| = 2.

We define ack(n), ack+(n), and ack−(n) similarly, using αi = αℓ+1−i

instead of αi ̸= αℓ+1−i . We drop the superscript k if k = 0.

We have pck+(n) = pck−(n + 1), so pck(n) = pck+(n) + pck+(n − 1),
where pck+(−1) := 0; it is similar for ack(n).
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Closed formulas for pck+(n) and ack+(n)

We show, both analytically and combinatorially, that

pck+(n) =
∑

i+2j=n−3k

(
i + k − 1

i

)(
j + k

j

)
2j+k ,

ack+(n) =
∑

2r+i+j=n−2k

(
r + k

r

)(
r

i

)(
r + j − 1

j

)
.

We provide two more formulas for ack+(n):

ack+(n) =
∑

2r+i+j=n−2k

2i
(
r + k

k

)(
r

i

)(
i + j − 1

j

)

=
∑

i+j+r+2s=n−2k

(−1)i
(
k + 1

i

)(
j + k

j

)(
j

r + s

)(
r + s

r

)
.
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More on pck+(n) and ack+(n) for k = 0, 1

We have pc+(n) = 2n/2 if n is even or 0 otherwise, so pc(n) = 2⌊n/2⌋.

We have pc1+(n) = 2 + (⌈n/2⌉ − 2)2⌈n/2⌉ [A036799].

The number ac+(n) equals the tribonacci number T ′
n+1 with initial

conditions T ′
0 = 0,T ′

1 = 1,T ′
2 = 0 [A001590], so ac(n) = T ′

n+1 + T ′
n.

We provide another formula for ack(n):

ack(n) =
∑

i+j+r+s=n−2k

(−1)i
(
k

i

)(
j + k

j

)(
j

r

)(
r

s

)

−
∑

i+j+r+s=n−2k−2

(−1)i
(
k

i

)(
j + k

j

)(
j

r

)(
r

s

)
.

This reduces to ac(n) = Tn+1 − Tn−1 when k = 0. As a byproduct,
we get Tn+1 =

∑
j+r+s=n

(j
r

)(r
s

)
, which has a simple bijective proof.
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Reduced (anti-)palindromic compositions

Andrews, Just, and Simay found a formula for the number rac(n) of
reduced anti-palindromic compositions of n (the equivalence classes
under swaps of the ith part and the ith last part for all i).

Let rpck(n) (or rack(n)) be the number of equivalence classes of
compositions counted by pck(n) (or ack(n)) under the above swaps.
Define rpck+(n), rpc

k
−(n), rac

k
+(n), and rack−(n) similarly.

We have rpck±(n) = pck±(n)/2
k , so rpck(n) = pck(n)/2k , and

rack+(n) =
∑

2r+j=n−2k

(r+k
r

)(r+j−1
j

)
, which is also the number of

compositions of n − k with exactly k parts equal to 1 [A105422].

We have rac+(n) = Fn−1 and rac(n) = Fn for n ≥ 1. and rac1(n)
counts compositions of n − 2 with at most one even part [A208354].
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Partially palindromic compositions modulo m

Define pck(n,m) and pck±(n,m) by replacing αi ̸= αℓ+1−i with
αi ̸≡ αℓ+1−i (mod m) in the definition of pck(n) and pck±(n).

We provide two formulas for pck+(n,m):

pck+(n,m) =
∑

(m−1)r+s
=n−k−2i−mj

(−1)r2i
(
i

k

)(
i + j − 1

j

)(
k

r

)(
k + s − 1

s

)

=
∑

i0+i1+···+im−2=k
i1+2i2+···+(m−2)im−2

=n−k−2i−mj

2i
(
i

k

)(
i + j − 1

j

)(
k

i0, i1, . . . , im−2

)
.

Taking k = 0 gives pc+(n,m) =
∑

2i+mj=n 2
i
(i+j−1

j

)
.
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More on pc+(n,m) and pc(n,m)

Our formula for pc+(n,m) implies some known results:

pc(2n, 2) = pc(2n + 1, 2) = 2 · 3n−1 for n ≥ 1,
pc(n, 3) = 2Fn−1 for n ≥ 2,
pc(2n,m) = pc(2n + 1,m) if m is even,
pc(2n,m) = pc(2n + 1,m) = 2n if 2n + 1 < m.

We have pc+(n, 1) =
∑

2i+j=n 2
i
(i+j−1

j

)
and pck+(n, 1) = 0 for k ≥ 1.

This sequence also counts compositions of n with parts greater than
one, each part colored in two possible ways [A078008]. (Bijection?)

We have pc(n, 1) = 2n−1 and pck(n, 1) = 0 for k ≥ 1.

We have pck+(n, 2) =
∑

2i+2j=n−k 2
i
( i
k

)(i+j−1
j

)
, which is zero when

n − k is odd. In particular, for n ≥ 1 we have pc1+(2n, 2) = 0 and

pc1+(2n + 1, 2) =
∑

i≥0(i + 1)2i+1
(n−1

i

)
[A081038].
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Reduced partially palindromic compositions modulo m

Let rpck(n,m) be the number of equivalence classes of compositions
counted by pck(n,m) under swaps of the ith part and the ith last
part for all i . Define rpck+(n,m) and rpck−(n,m) similarly. We show

rpck+(n,m) =
∑

(m−1)r+s
=n−k−2i−mj−2c

(−1)r
(
i

k

)(
i + j − 1

j

)(
i + c

c

)(
k

r

)(
k + s − 1

s

)

=
∑

i0+i1+···+im−2=k
i1+2i2+···+(m−2)im−2

=n−k−2i−mj−2c

(
i

k

)(
i + j − 1

j

)(
i + c

c

)(
k

i0, i1, . . . , im−2

)
.

Taking k = 0 gives rpc+(n,m) =
∑

2i+mj+2r=n

(i+j−1
j

)(i+r
r

)
.
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More on rpc+(n,m) for small k or m

Taking k = 0 and m = 1 gives rpc+(n, 1) [A052547] and

rpc(n, 1) =
∑

2i+j+2r=n

(i+j
j

)(i+r−1
r

)
[A028495]; the latter also

counts compositions of n with increments only appearing at every
second position (such compositions are in bijection with the
compositions counted by rpc(n, 1) by reordering parts appropriately).

We have rpc+(2n, 2) = F2n+1 and rpc+(2n + 1, 2) = 0, so
rpc(2n, 2) = rpc(2n + 1, 2) = F2n+1.

We have rpc+(2n, 4) [A052534] and rpc+(2n + 1, 4) = 0.

We have rpck+(n, 1) = 0 and rpck+(n, 2) =
∑

2i+2j=n−k

( i
k

)(2i+j
j

)
.

Thus rpc1+(2n, 2) = 0, rpc1+(2n + 1, 2) =
∑

0≤i≤n i
(n+i

2i

)
[A001870],

and rpc1(2n + 1, 2) = rpc1(2n + 2, 2) = rpc1+(2n + 1, 2).
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Partially anti-palindromic compositions modulo m

We define ack(n,m), ack+(n,m), and ack−(n,m) by using ≡ instead of

̸≡ in the definition of pck(n,m), pck+(n,m), and pck−(n,m). We show

ack+(n,m) =
∑

2i+j+r(m−1)+s
=n−2k−mc−md

(−1)r2j
(i + k

k

)(i
j

)(j
r

)(j + s − 1

s

)(k
c

)(k + j + d − 1

d

)

=
∑

i0+i1+···+im−2=j
i1+2i2+···+(m−2)im−2
=n−2k−2i−j−mc−md

2j
(i + k

k

)(i
j

)( j

i0, . . . , im−2

)(k
c
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)
.

We have another formula for ack(n,m):
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More on ack(n,m) and ack+(n,m) for small k or m

Taking k = 0 gives ac+(n,m) and ac(n,m), which are not in OEIS.

For m = 1 we have ack+(n, 1) =
∑

2i+c+d=n−2k

(i+k
k

)(k
c

)(k+d−1
d

)
. A

signed version of ack+(n, 1) gives a Riordan array [A158454], which is
the coefficient table of the square of Chebyshev S-polynomials and
also sends the Catalan numbers to the all-one sequence.

We have ac+(n, 1) = (1 + (−1)n)/2 and for k = 1, 2, 3, 4, 5 we find
ack+(n, 1) in OEIS [A002620, A001752, A001769, A001780, A001786].

We have ack(n, 1) =
( n
2k

)
, which counts compositions of n with 2k or

2k + 1 parts. A combinatorial proof: such compositions are in
bijection with binary sequences of length n with exactly 2k ones (if the
last digit is 0, change it to 1 to get a composition with 2k + 1 parts).

For m = 2, 3 or k = 0, 1, 2 we cannot find ack(n,m) in OEIS.
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Reduced partially anti-palindromic compositions modulo m

Let rack(n,m) be the number of equivalence classes of compositions
counted by ack(n,m) under swaps of the ith part and ith last part for
all i . Define rack+(n,m) and rack−(n,m) similarly. We show that

rack+(n,m) =
∑

r(m−1)+s+md
=n−2k−2i−j

(−1)r
(
i + k

k

)(
i

j

)(
j

r

)(
j + s − 1

s

)(
k + j + d − 1

d

)

=
∑

i0+i1+···+im−2=j
i1+2i2+···+(m−2)im−2

=n−2k−2i−j−md

(
i + k

k

)(
i

j

)(
j

i0, . . . , im−2

)(
k + j + d − 1

d

)
.

We have one more formula for rack(n,m):

rack (n,m) =
∑

r(m−1)+2s+dm
=n−2k−3i+j

(−1)r
(i + k

k

)(i + j

j

)(i
r

)(i + k + s − 1

s

)(i + k + d − 1

d

)
.
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More on rack+(n,m) and rack(n,m) for k = 0 or m = 1

For n ≥ 2, the number rac+(n, 2) counts compositions of n − 2 with
no two adjacent parts of the same parity [A062200].

The sequence rac(n, 3) agrees with a sequence in OEIS [A113435]
that does not have any combinatorial interpretation yet.

We have rack+(n, 1) =
∑

2i+j=n−2k

(i+k
k

)(j+k−1
j

)
. In particular,

rac1+(2n, 1) = rac1+(2n + 1, 1) = n(n + 1)/2 [A008805] and

rac2+(n, 1) =
∑

2i+j=n−4

(i+2
2

)
(j + 1) [A096338].

We have rack(n, 1) =
∑

2i+j=n−2k

(i+k−1
i

)(j+k
j

)
[A060098]. Special

cases include rac1(n, 1) = ⌊n2⌋⌈
n
2⌉ [A002620], rac2(n, 1) [A002624],

rac3(n, 1) [A060099], rac4(n, 1) [A060100], and rac5(n, 1) [A060101].

Any combinatorial explanation for rac1(n, 1) = ac1+(n, 1)?
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Remarks and questions

Our work provides a uniform framework for various generalizations of
palindromic compositions from previous work of Andrews, Just, and
Simay. It also has connections with many sequences in OEIS.

We used Sage to help discover and verify the closed formulas in this
work.

We have combinatorial proofs for most of the positive sum formulas.

We do not have any combinatorial proofs for the alternating sum
formulas. Can this be done via inclusion-exclusion?

Thank you very much for your attention!
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