Partially Palindromic Compositions

Jia Huang
University of Nebraska at Kearney
E-mail address: huangj2@unk.edu

Palindromic compositions

- A composition of n is a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of positive integers with $\alpha_{1}+\cdots+\alpha_{\ell}=n$; the parts of α are $\alpha_{1}, \ldots, \alpha_{\ell}$. There are 2^{n-1} compositions of n (\leftrightarrow binary strings of length n ending with 1).

Palindromic compositions

- A composition of n is a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of positive integers with $\alpha_{1}+\cdots+\alpha_{\ell}=n$; the parts of α are $\alpha_{1}, \ldots, \alpha_{\ell}$. There are 2^{n-1} compositions of n (\leftrightarrow binary strings of length n ending with 1).
- A composition $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n is palindromic if $\alpha_{i}=\alpha_{\ell+1-i}$ for all $i=1, \ldots,\lfloor\ell / 2\rfloor$. The number of such compositions is $\mathrm{pc}(n)=2^{\lfloor n / 2\rfloor}$.

Palindromic compositions

- A composition of n is a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of positive integers with $\alpha_{1}+\cdots+\alpha_{\ell}=n$; the parts of α are $\alpha_{1}, \ldots, \alpha_{\ell}$. There are 2^{n-1} compositions of n (\leftrightarrow binary strings of length n ending with 1).
- A composition $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n is palindromic if $\alpha_{i}=\alpha_{\ell+1-i}$ for all $i=1, \ldots,\lfloor\ell / 2\rfloor$. The number of such compositions is $\mathrm{pc}(n)=2^{\lfloor n / 2\rfloor}$.
- Andrews and Simay (2021) defined a composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ to be parity palindromic if $\alpha_{i} \equiv \alpha_{\ell+1-i}(\bmod 2)$ for all i.

Palindromic compositions

- A composition of n is a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of positive integers with $\alpha_{1}+\cdots+\alpha_{\ell}=n$; the parts of α are $\alpha_{1}, \ldots, \alpha_{\ell}$. There are 2^{n-1} compositions of n (\leftrightarrow binary strings of length n ending with 1).
- A composition ($\alpha_{1}, \ldots, \alpha_{\ell}$) of n is palindromic if $\alpha_{i}=\alpha_{\ell+1-i}$ for all $i=1, \ldots,\lfloor\ell / 2\rfloor$. The number of such compositions is $\operatorname{pc}(n)=2^{\lfloor n / 2\rfloor}$.
- Andrews and Simay (2021) defined a composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ to be parity palindromic if $\alpha_{i} \equiv \alpha_{\ell+1-i}(\bmod 2)$ for all i.
- Just (2021+) defined a composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ to be palindromic modulo m if $\alpha_{i} \equiv \alpha_{\ell+1-i}(\bmod m)$ for all i and found the generating function for the number $\operatorname{pc}(n, m)$ of such compositions.

More on palindromic compositions

- Andrews and Simay (analytically), Just (bijectively), and Vatter (recursively) proved that $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$.

More on palindromic compositions

- Andrews and Simay (analytically), Just (bijectively), and Vatter (recursively) proved that $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$.
- Just showed (analytically and bijectively) that $\mathrm{pc}(n, 3)=2 F_{n-1}$ for all $n \geq 2$, where F_{n} is the Fibonacci number defined by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$, and briefly discussed the case $m>3$.

More on palindromic compositions

- Andrews and Simay (analytically), Just (bijectively), and Vatter (recursively) proved that $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$.
- Just showed (analytically and bijectively) that $\mathrm{pc}(n, 3)=2 F_{n-1}$ for all $n \geq 2$, where F_{n} is the Fibonacci number defined by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$, and briefly discussed the case $m>3$.
- Andrews, Just, and Simay (2022) defined a composition $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n to be anti-palindromic if $\alpha_{i} \neq \alpha_{\ell+1-i}$ for all $i=1,2, \ldots,\lfloor\ell / 2\rfloor$ and showed that the number $\operatorname{ac}(n)$ of such compositions equals $T_{n}+T_{n-2}$, where T_{n} is a tribonacci number defined by $T_{0}=0$, $T_{1}=T_{2}=1$, and $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$ for $n \geq 3$.

More on palindromic compositions

- Andrews and Simay (analytically), Just (bijectively), and Vatter (recursively) proved that $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$.
- Just showed (analytically and bijectively) that $\mathrm{pc}(n, 3)=2 F_{n-1}$ for all $n \geq 2$, where F_{n} is the Fibonacci number defined by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$, and briefly discussed the case $m>3$.
- Andrews, Just, and Simay (2022) defined a composition $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n to be anti-palindromic if $\alpha_{i} \neq \alpha_{\ell+1-i}$ for all $i=1,2, \ldots,\lfloor\ell / 2\rfloor$ and showed that the number $\operatorname{ac}(n)$ of such compositions equals $T_{n}+T_{n-2}$, where T_{n} is a tribonacci number defined by $T_{0}=0$, $T_{1}=T_{2}=1$, and $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$ for $n \geq 3$.
- We view all compositions partially (anti-)palindromic (modulo m) and count them by the extent to which they are (anti-)palindromic.

Motivation

- A partition of n is a decreasing sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of positive integers with size $|\lambda|:=\lambda_{1}+\cdots+\lambda_{\ell}=n$ and parts $\lambda_{1}, \ldots, \lambda_{\ell}$.

Motivation

- A partition of n is a decreasing sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of positive integers with size $|\lambda|:=\lambda_{1}+\cdots+\lambda_{\ell}=n$ and parts $\lambda_{1}, \ldots, \lambda_{\ell}$.
- Euler: The number of partitions of n into distinct parts equals the number of partitions of n into odd parts.

Motivation

- A partition of n is a decreasing sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of positive integers with size $|\lambda|:=\lambda_{1}+\cdots+\lambda_{\ell}=n$ and parts $\lambda_{1}, \ldots, \lambda_{\ell}$.
- Euler: The number of partitions of n into distinct parts equals the number of partitions of n into odd parts.
- Glaisher: The number of partitions of n with no part occurring $\geq k$ times equals the number of partitions of n with no parts divisible by k.

Motivation

- A partition of n is a decreasing sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of positive integers with size $|\lambda|:=\lambda_{1}+\cdots+\lambda_{\ell}=n$ and parts $\lambda_{1}, \ldots, \lambda_{\ell}$.
- Euler: The number of partitions of n into distinct parts equals the number of partitions of n into odd parts.
- Glaisher: The number of partitions of n with no part occurring $\geq k$ times equals the number of partitions of n with no parts divisible by k.
- Franklin: The number of partitions of n with m distinct parts each occurring k or more times equals the number of partitions of n with exactly m distinct parts divisible by k.

Motivation

- A partition of n is a decreasing sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of positive integers with size $|\lambda|:=\lambda_{1}+\cdots+\lambda_{\ell}=n$ and parts $\lambda_{1}, \ldots, \lambda_{\ell}$.
- Euler: The number of partitions of n into distinct parts equals the number of partitions of n into odd parts.
- Glaisher: The number of partitions of n with no part occurring $\geq k$ times equals the number of partitions of n with no parts divisible by k.
- Franklin: The number of partitions of n with m distinct parts each occurring k or more times equals the number of partitions of n with exactly m distinct parts divisible by k.
- There are parallel results on compositions: The number of compositions of n with odd parts and the number of compositions of $\mathrm{n}+1$ with parts greater than one are both F_{n}. This was generalized by Munagi (2012) and further generalized by H. (2020).

Partially (anti-)palindromic compositions

- For $n, k \geq 0$, let $\mathrm{PC}^{k}(n)$ be the set of compositions $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n with $\#\left\{1 \leq i \leq \ell / 2: \alpha_{i} \neq \alpha_{\ell+1-i}\right\}=k$ and let $\mathrm{pc}^{k}(n):=\left|\mathrm{PC}^{k}(n)\right|$.

Partially (anti-)palindromic compositions

- For $n, k \geq 0$, let $\mathrm{PC}^{k}(n)$ be the set of compositions $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n with $\#\left\{1 \leq i \leq \ell / 2: \alpha_{i} \neq \alpha_{\ell+1-i}\right\}=k$ and let $\mathrm{pc}^{k}(n):=\left|\mathrm{PC}^{k}(n)\right|$.
- We have $\mathrm{pc}^{k}(n)=\mathrm{pc}_{+}^{k}(n)+\mathrm{pc}_{-}^{k}(n)$, where

$$
\begin{aligned}
& \operatorname{pc}_{+}^{k}(n):=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \operatorname{PC}^{k}(n): 2 \mid \ell \text { or } 2 \mid \alpha_{(\ell+1) / 2}\right\}, \\
& \operatorname{pc}_{-}^{k}(n):=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \operatorname{PC}^{k}(n): 2 \nmid \ell \text { and } 2 \nmid \alpha_{(\ell+1) / 2}\right\} .
\end{aligned}
$$

Partially (anti-)palindromic compositions

- For $n, k \geq 0$, let $\mathrm{PC}^{k}(n)$ be the set of compositions $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n with $\#\left\{1 \leq i \leq \ell / 2: \alpha_{i} \neq \alpha_{\ell+1-i}\right\}=k$ and let $\mathrm{pc}^{k}(n):=\left|\mathrm{PC}^{k}(n)\right|$.
- We have $\mathrm{pc}^{k}(n)=\mathrm{pc}_{+}^{k}(n)+\mathrm{pc}_{-}^{k}(n)$, where

$$
\begin{aligned}
& \operatorname{pc}_{+}^{k}(n):=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \mathrm{PC}^{k}(n): 2 \mid \ell \text { or } 2 \mid \alpha_{(\ell+1) / 2}\right\}, \\
& \operatorname{pc}_{-}^{k}(n):=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \operatorname{PC}^{k}(n): 2 \nmid \ell \text { and } 2 \nmid \alpha_{(\ell+1) / 2}\right\} .
\end{aligned}
$$

- Example: $\mathrm{pc}_{+}^{1}(4)=|\{31,13\}|=2$ and $\mathrm{pc}_{-}^{1}(4)=\{211,112\} \mid=2$.

Partially (anti-)palindromic compositions

- For $n, k \geq 0$, let $\mathrm{PC}^{k}(n)$ be the set of compositions $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n with $\#\left\{1 \leq i \leq \ell / 2: \alpha_{i} \neq \alpha_{\ell+1-i}\right\}=k$ and let $\mathrm{pc}^{k}(n):=\left|\mathrm{PC}^{k}(n)\right|$.
- We have $\mathrm{pc}^{k}(n)=\mathrm{pc}_{+}^{k}(n)+\mathrm{pc}_{-}^{k}(n)$, where

$$
\begin{aligned}
& \operatorname{pc}_{+}^{k}(n):=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \mathrm{PC}^{k}(n): 2 \mid \ell \text { or } 2 \mid \alpha_{(\ell+1) / 2}\right\}, \\
& \operatorname{pc}_{-}^{k}(n):=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \mathrm{PC}^{k}(n): 2 \nmid \ell \text { and } 2 \nmid \alpha_{(\ell+1) / 2}\right\} .
\end{aligned}
$$

- Example: $\mathrm{pc}_{+}^{1}(4)=|\{31,13\}|=2$ and $\mathrm{pc}_{-}^{1}(4)=\{211,112\} \mid=2$.
- We define $\mathrm{ac}^{k}(n)$, $a c_{+}^{k}(n)$, and $\operatorname{ac}_{-}^{k}(n)$ similarly, using $\alpha_{i}=\alpha_{\ell+1-i}$ instead of $\alpha_{i} \neq \alpha_{\ell+1-i}$. We drop the superscript k if $k=0$.

Partially (anti-)palindromic compositions

- For $n, k \geq 0$, let $\mathrm{PC}^{k}(n)$ be the set of compositions $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of n with $\#\left\{1 \leq i \leq \ell / 2: \alpha_{i} \neq \alpha_{\ell+1-i}\right\}=k$ and let $\mathrm{pc}^{k}(n):=\left|\mathrm{PC}^{k}(n)\right|$.
- We have $\mathrm{pc}^{k}(n)=\mathrm{pc}_{+}^{k}(n)+\mathrm{pc}_{-}^{k}(n)$, where

$$
\begin{aligned}
& \operatorname{pc}_{+}^{k}(n):=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \mathrm{PC}^{k}(n): 2 \mid \ell \text { or } 2 \mid \alpha_{(\ell+1) / 2}\right\}, \\
& \operatorname{pc}_{-}^{k}(n):=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \mathrm{PC}^{k}(n): 2 \nmid \ell \text { and } 2 \nmid \alpha_{(\ell+1) / 2}\right\} .
\end{aligned}
$$

- Example: $\mathrm{pc}_{+}^{1}(4)=|\{31,13\}|=2$ and $\mathrm{pc}_{-}^{1}(4)=\{211,112\} \mid=2$.
- We define $\mathrm{ac}^{k}(n), a c_{+}^{k}(n)$, and $\operatorname{ac}_{-}^{k}(n)$ similarly, using $\alpha_{i}=\alpha_{\ell+1-i}$ instead of $\alpha_{i} \neq \alpha_{\ell+1-i}$. We drop the superscript k if $k=0$.
- We have $\mathrm{pc}_{+}^{k}(n)=\mathrm{pc}_{-}^{k}(n+1)$, so $\mathrm{pc}^{k}(n)=\mathrm{pc}_{+}^{k}(n)+\mathrm{pc}_{+}^{k}(n-1)$, where $\mathrm{pc}_{+}^{k}(-1):=0$; it is similar for $\mathrm{ac}^{k}(n)$.

Closed formulas for $\mathrm{pc}_{+}^{k}(n)$ and $\mathrm{ac}_{+}^{k}(n)$

- We show, both analytically and combinatorially, that

$$
\begin{aligned}
& \mathrm{pc}_{+}^{k}(n)=\sum_{i+2 j=n-3 k}\binom{i+k-1}{i}\binom{j+k}{j} 2^{j+k}, \\
& \mathrm{ac}_{+}^{k}(n)=\sum_{2 r+i+j=n-2 k}\binom{r+k}{r}\binom{r}{i}\binom{r+j-1}{j} .
\end{aligned}
$$

Closed formulas for $\mathrm{pc}_{+}^{k}(n)$ and $\mathrm{ac}_{+}^{k}(n)$

- We show, both analytically and combinatorially, that

$$
\begin{aligned}
& \mathrm{pc}_{+}^{k}(n)=\sum_{i+2 j=n-3 k}\binom{i+k-1}{i}\binom{j+k}{j} 2^{j+k}, \\
& \mathrm{ac}_{+}^{k}(n)=\sum_{2 r+i+j=n-2 k}\binom{r+k}{r}\binom{r}{i}\binom{r+j-1}{j} .
\end{aligned}
$$

- We provide two more formulas for $\mathrm{ac}_{+}^{k}(n)$:

$$
\begin{aligned}
\operatorname{ac}_{+}^{k}(n) & =\sum_{2 r+i+j=n-2 k} 2^{i}\binom{r+k}{k}\binom{r}{i}\binom{i+j-1}{j} \\
& =\sum_{i+j+r+2 s=n-2 k}(-1)^{i}\binom{k+1}{i}\binom{j+k}{j}\binom{j}{r+s}\binom{r+s}{r} .
\end{aligned}
$$

More on $\mathrm{pc}_{+}^{k}(n)$ and $\mathrm{ac}_{+}^{k}(n)$ for $k=0,1$

- We have $\mathrm{pc}_{+}(n)=2^{n / 2}$ if n is even or 0 otherwise, so $\mathrm{pc}(n)=2^{\lfloor n / 2\rfloor}$.

More on $\mathrm{pc}_{+}^{k}(n)$ and $\mathrm{ac}_{+}^{k}(n)$ for $k=0,1$

- We have $\mathrm{pc}_{+}(n)=2^{n / 2}$ if n is even or 0 otherwise, so $\mathrm{pc}(n)=2^{\lfloor n / 2\rfloor}$.
- We have $\mathrm{pc}_{+}^{1}(n)=2+(\lceil n / 2\rceil-2) 2^{\lceil n / 2\rceil}$ [A036799].

More on $\mathrm{pc}_{+}^{k}(n)$ and $\mathrm{ac}_{+}^{k}(n)$ for $k=0,1$

- We have $\mathrm{pc}_{+}(n)=2^{n / 2}$ if n is even or 0 otherwise, so $\mathrm{pc}(n)=2^{\lfloor n / 2\rfloor}$.
- We have $\mathrm{pc}_{+}^{1}(n)=2+(\lceil n / 2\rceil-2) 2^{\lceil n / 2\rceil}$ [A036799].
- The number ac+ (n) equals the tribonacci number T_{n+1}^{\prime} with initial conditions $T_{0}^{\prime}=0, T_{1}^{\prime}=1, T_{2}^{\prime}=0[$ A001590 $]$, so $\operatorname{ac}(n)=T_{n+1}^{\prime}+T_{n}^{\prime}$.

More on $\mathrm{pc}_{+}^{k}(n)$ and $\mathrm{ac}_{+}^{k}(n)$ for $k=0,1$

- We have $\mathrm{pc}_{+}(n)=2^{n / 2}$ if n is even or 0 otherwise, so $\mathrm{pc}(n)=2^{\lfloor n / 2\rfloor}$.
- We have $\mathrm{pc}_{+}^{1}(n)=2+(\lceil n / 2\rceil-2) 2^{\lceil n / 2\rceil}$ [A036799].
- The number $\mathrm{ac}_{+}(n)$ equals the tribonacci number T_{n+1}^{\prime} with initial conditions $T_{0}^{\prime}=0, T_{1}^{\prime}=1, T_{2}^{\prime}=0[\mathrm{~A} 001590]$, so $\operatorname{ac}(n)=T_{n+1}^{\prime}+T_{n}^{\prime}$.
- We provide another formula for $\operatorname{ac}^{k}(n)$:

$$
\begin{aligned}
\operatorname{ac}^{k}(n) & =\sum_{i+j+r+s=n-2 k}(-1)^{i}\binom{k}{i}\binom{j+k}{j}\binom{j}{r}\binom{r}{s} \\
& -\sum_{i+j+r+s=n-2 k-2}(-1)^{i}\binom{k}{i}\binom{j+k}{j}\binom{j}{r}\binom{r}{s} .
\end{aligned}
$$

This reduces to $\operatorname{ac}(n)=T_{n+1}-T_{n-1}$ when $k=0$. As a byproduct, we get $T_{n+1}=\sum_{j+r+s=n}\binom{j}{r}\binom{r}{s}$, which has a simple bijective proof.

Reduced (anti-)palindromic compositions

- Andrews, Just, and Simay found a formula for the number rac(n) of reduced anti-palindromic compositions of n (the equivalence classes under swaps of the i th part and the i th last part for all i).

Reduced (anti-)palindromic compositions

- Andrews, Just, and Simay found a formula for the number rac(n) of reduced anti-palindromic compositions of n (the equivalence classes under swaps of the i th part and the i th last part for all i).
- Let $\operatorname{rpc}^{k}(n)$ (or $\left.\operatorname{rac}^{k}(n)\right)$ be the number of equivalence classes of compositions counted by $\mathrm{pc}^{k}(n)$ (or $\mathrm{ac}^{k}(n)$) under the above swaps. Define $\operatorname{rpc}_{+}^{k}(n), \operatorname{rpc}_{-}^{k}(n), \operatorname{rac}_{+}^{k}(n)$, and $\operatorname{rac}_{-}^{k}(n)$ similarly.

Reduced (anti-)palindromic compositions

- Andrews, Just, and Simay found a formula for the number rac(n) of reduced anti-palindromic compositions of n (the equivalence classes under swaps of the i th part and the i th last part for all i).
- Let $\operatorname{rpc}^{k}(n)$ (or $\operatorname{rac}^{k}(n)$) be the number of equivalence classes of compositions counted by $\mathrm{pc}^{k}(n)$ (or $\mathrm{ac}^{k}(n)$) under the above swaps. Define $\operatorname{rpc}_{+}^{k}(n), \operatorname{rpc}_{-}^{k}(n), \operatorname{rac}_{+}^{k}(n)$, and $\operatorname{rac}_{-}^{k}(n)$ similarly.
- We have $\operatorname{rpc}_{ \pm}^{k}(n)=\mathrm{pc}_{ \pm}^{k}(n) / 2^{k}$, ${\operatorname{so~} \mathrm{rpc}^{k}}^{(n)}=\mathrm{pc}^{k}(n) / 2^{k}$, and $\operatorname{rac}_{+}^{k}(n)=\sum_{2 r+j=n-2 k}\binom{r+k}{r}\binom{r+j-1}{j}$, which is also the number of compositions of $n-k$ with exactly k parts equal to 1 [A105422].

Reduced (anti-)palindromic compositions

- Andrews, Just, and Simay found a formula for the number rac(n) of reduced anti-palindromic compositions of n (the equivalence classes under swaps of the i th part and the i th last part for all i).
- Let $\operatorname{rpc}^{k}(n)$ (or $\operatorname{rac}^{k}(n)$) be the number of equivalence classes of compositions counted by $\mathrm{pc}^{k}(n)$ (or $\mathrm{ac}^{k}(n)$) under the above swaps. Define $\operatorname{rpc}_{+}^{k}(n), \operatorname{rpc}_{-}^{k}(n), \operatorname{rac}_{+}^{k}(n)$, and $\operatorname{rac}_{-}^{k}(n)$ similarly.
- We have $\operatorname{rpc}_{ \pm}^{k}(n)=\mathrm{pc}_{ \pm}^{k}(n) / 2^{k}$, ${\operatorname{so~} \mathrm{rpc}^{k}}^{(n)}=\mathrm{pc}^{k}(n) / 2^{k}$, and $\operatorname{rac}_{+}^{k}(n)=\sum_{2 r+j=n-2 k}\binom{r+k}{r}\binom{r+j-1}{j}$, which is also the number of compositions of $n-k$ with exactly k parts equal to 1 [A105422].
- We have $\operatorname{rac}_{+}(n)=F_{n-1}$ and $\operatorname{rac}(n)=F_{n}$ for $n \geq 1$. and $\operatorname{rac}^{1}(n)$ counts compositions of $n-2$ with at most one even part [A208354].

Partially palindromic compositions modulo m

- Define $\mathrm{pc}^{k}(n, m)$ and $\mathrm{pc}_{ \pm}^{k}(n, m)$ by replacing $\alpha_{i} \neq \alpha_{\ell+1-i}$ with $\alpha_{i} \not \equiv \alpha_{\ell+1-i}(\bmod m)$ in the definition of $\mathrm{pc}^{k}(n)$ and $\mathrm{pc}_{ \pm}^{k}(n)$.

Partially palindromic compositions modulo m

- Define $\mathrm{pc}^{k}(n, m)$ and $\mathrm{pc}_{ \pm}^{k}(n, m)$ by replacing $\alpha_{i} \neq \alpha_{\ell+1-i}$ with $\alpha_{i} \not \equiv \alpha_{\ell+1-i}(\bmod m)$ in the definition of $\mathrm{pc}^{k}(n)$ and $\mathrm{pc}_{ \pm}^{k}(n)$.
- We provide two formulas for $\mathrm{pc}_{+}^{k}(n, m)$:

$$
\begin{aligned}
\mathrm{pc}_{+}^{k}(n, m)= & \sum_{\substack{(m-1) r+s \\
\\
=n-k-2 i-m j}}(-1)^{r} 2^{i}\binom{i}{k}\binom{i+j-1}{j}\binom{k}{r}\binom{k+s-1}{s} \\
= & \sum_{\substack{i_{0}+i_{1}+\cdots+i_{m-2}=k \\
i_{1}+2 i_{2}+\cdots+(m-2) i_{m-2} \\
=n-k-2 i-m j}} 2^{i}\binom{i}{k}\binom{i+j-1}{j}\binom{k}{i_{0}, i_{1}, \ldots, i_{m-2}} .
\end{aligned}
$$

Partially palindromic compositions modulo m

- Define $\mathrm{pc}^{k}(n, m)$ and $\mathrm{pc}_{ \pm}^{k}(n, m)$ by replacing $\alpha_{i} \neq \alpha_{\ell+1-i}$ with $\alpha_{i} \not \equiv \alpha_{\ell+1-i}(\bmod m)$ in the definition of $\mathrm{pc}^{k}(n)$ and $\mathrm{pc}_{ \pm}^{k}(n)$.
- We provide two formulas for $\mathrm{pc}_{+}^{k}(n, m)$:

$$
\begin{aligned}
\mathrm{pc}_{+}^{k}(n, m)= & \sum_{\substack{(m-1) r+s \\
\\
=n-k-2 i-m j}}(-1)^{r} 2^{i}\binom{i}{k}\binom{i+j-1}{j}\binom{k}{r}\binom{k+s-1}{s} \\
= & \sum_{\substack{i_{0}+i_{1}+\cdots+i_{m-2}=k \\
i_{1}+2 i_{2}+\cdots+(m-2) i_{m-2} \\
=n-k-2 i-m j}} 2^{i}\binom{i}{k}\binom{i+j-1}{j}\binom{k}{i_{0}, i_{1}, \ldots, i_{m-2}} .
\end{aligned}
$$

- Taking $k=0$ gives $\mathrm{pc}_{+}(n, m)=\sum_{2 i+m j=n} 2^{i}\binom{i+j-1}{j}$.

More on $\mathrm{pc}_{+}(n, m)$ and $\mathrm{pc}(n, m)$

- Our formula for $\mathrm{pc}_{+}(n, m)$ implies some known results:

More on $\mathrm{pc}_{+}(n, m)$ and $\mathrm{pc}(n, m)$

- Our formula for $\mathrm{pc}_{+}(n, m)$ implies some known results:
- $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$ for $n \geq 1$,

More on $\mathrm{pc}_{+}(n, m)$ and $\mathrm{pc}(n, m)$

- Our formula for $\mathrm{pc}_{+}(n, m)$ implies some known results:
- $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$ for $n \geq 1$,
- $\operatorname{pc}(n, 3)=2 F_{n-1}$ for $n \geq 2$,

More on $\mathrm{pc}_{+}(n, m)$ and $\mathrm{pc}(n, m)$

- Our formula for $\mathrm{pc}_{+}(n, m)$ implies some known results:
- $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$ for $n \geq 1$,
- $\operatorname{pc}(n, 3)=2 F_{n-1}$ for $n \geq 2$,
- $\mathrm{pc}(2 n, m)=\mathrm{pc}(2 n+1, m)$ if m is even,

More on $\mathrm{pc}_{+}(n, m)$ and $\mathrm{pc}(n, m)$

- Our formula for $\mathrm{pc}_{+}(n, m)$ implies some known results:
- $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$ for $n \geq 1$,
- $\mathrm{pc}(n, 3)=2 F_{n-1}$ for $n \geq 2$,
- $\mathrm{pc}(2 n, m)=\mathrm{pc}(2 n+1, m)$ if m is even,
- $\mathrm{pc}(2 n, m)=\mathrm{pc}(2 n+1, m)=2^{n}$ if $2 n+1<m$.

More on $\mathrm{pc}_{+}(n, m)$ and $\mathrm{pc}(n, m)$

- Our formula for $\mathrm{pc}_{+}(n, m)$ implies some known results:
- $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$ for $n \geq 1$,
- $\mathrm{pc}(n, 3)=2 F_{n-1}$ for $n \geq 2$,
- $\mathrm{pc}(2 n, m)=\mathrm{pc}(2 n+1, m)$ if m is even,
- $\mathrm{pc}(2 n, m)=\mathrm{pc}(2 n+1, m)=2^{n}$ if $2 n+1<m$.
- We have $\mathrm{pc}_{+}(n, 1)=\sum_{2 i+j=n} 2^{i}\binom{i+j-1}{j}$ and $\mathrm{pc}_{+}^{k}(n, 1)=0$ for $k \geq 1$. This sequence also counts compositions of n with parts greater than one, each part colored in two possible ways [A078008]. (Bijection?)

More on $\mathrm{pc}_{+}(n, m)$ and $\mathrm{pc}(n, m)$

- Our formula for $\mathrm{pc}_{+}(n, m)$ implies some known results:
- $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$ for $n \geq 1$,
- $\mathrm{pc}(n, 3)=2 F_{n-1}$ for $n \geq 2$,
- $\mathrm{pc}(2 n, m)=\mathrm{pc}(2 n+1, m)$ if m is even,
- $\mathrm{pc}(2 n, m)=\mathrm{pc}(2 n+1, m)=2^{n}$ if $2 n+1<m$.
- We have $\mathrm{pc}_{+}(n, 1)=\sum_{2 i+j=n} 2^{i}\binom{i+j-1}{j}$ and $\mathrm{pc}_{+}^{k}(n, 1)=0$ for $k \geq 1$. This sequence also counts compositions of n with parts greater than one, each part colored in two possible ways [A078008]. (Bijection?)
- We have $\mathrm{pc}(n, 1)=2^{n-1}$ and $\mathrm{pc}^{k}(n, 1)=0$ for $k \geq 1$.

More on $\mathrm{pc}_{+}(n, m)$ and $\mathrm{pc}(n, m)$

- Our formula for $\mathrm{pc}_{+}(n, m)$ implies some known results:
- $\mathrm{pc}(2 n, 2)=\mathrm{pc}(2 n+1,2)=2 \cdot 3^{n-1}$ for $n \geq 1$,
- $\operatorname{pc}(n, 3)=2 F_{n-1}$ for $n \geq 2$,
- $\mathrm{pc}(2 n, m)=\mathrm{pc}(2 n+1, m)$ if m is even,
- $\mathrm{pc}(2 n, m)=\mathrm{pc}(2 n+1, m)=2^{n}$ if $2 n+1<m$.
- We have $\mathrm{pc}_{+}(n, 1)=\sum_{2 i+j=n} 2^{i}\binom{i+j-1}{j}$ and $\mathrm{pc}_{+}^{k}(n, 1)=0$ for $k \geq 1$. This sequence also counts compositions of n with parts greater than one, each part colored in two possible ways [A078008]. (Bijection?)
- We have $\mathrm{pc}(n, 1)=2^{n-1}$ and $\mathrm{pc}^{k}(n, 1)=0$ for $k \geq 1$.
- We have $\mathrm{pc}_{+}^{k}(n, 2)=\sum_{2 i+2 j=n-k} 2^{i}\binom{i}{k}\binom{i+j-1}{j}$, which is zero when $n-k$ is odd. In particular, for $n \geq 1$ we have $\mathrm{pc}_{+}^{1}(2 n, 2)=0$ and $\mathrm{pc}_{+}^{1}(2 n+1,2)=\sum_{i \geq 0}(i+1) 2^{i+1}\binom{n-1}{i}$ [A081038].

Reduced partially palindromic compositions modulo m

- Let $\operatorname{rpc}^{k}(n, m)$ be the number of equivalence classes of compositions counted by $\mathrm{pc}^{k}(n, m)$ under swaps of the i th part and the i th last part for all i. Define $\operatorname{rpc}_{+}^{k}(n, m)$ and $\operatorname{rpc}_{-}^{k}(n, m)$ similarly. We show

$$
\begin{aligned}
& \operatorname{rpc}_{+}^{k}(n, m)= \sum_{\substack{(m-1) r+s \\
\\
\\
=n-k-2 i-m j-2 c}}(-1)^{r}\binom{i}{k}\binom{i+j-1}{j}\binom{i+c}{c}\binom{k}{r}\binom{k+s-1}{s} \\
&= \sum_{\substack{i_{0}+i_{1}+\cdots+i_{m-2}=k \\
i_{1}+2 i_{2}+\cdots+(m-2) i_{m-2} \\
=n-k-2 i-m j-2 c}}\binom{i}{k}\binom{i+j-1}{j}\binom{i+c}{c}\binom{k}{i_{0}, i_{1}, \ldots, i_{m-2}} . \\
&
\end{aligned}
$$

Reduced partially palindromic compositions modulo m

- Let $\operatorname{rpc}^{k}(n, m)$ be the number of equivalence classes of compositions counted by $\mathrm{pc}^{k}(n, m)$ under swaps of the i th part and the i th last part for all i. Define $\operatorname{rpc}_{+}^{k}(n, m)$ and $\operatorname{rpc}_{-}^{k}(n, m)$ similarly. We show

$$
\begin{aligned}
\operatorname{rpc}_{+}^{k}(n, m)= & \sum_{\substack{(m-1) r+s \\
=n-k-2 i-m j-2 c}}(-1)^{r}\binom{i}{k}\binom{i+j-1}{j}\binom{i+c}{c}\binom{k}{r}\binom{k+s-1}{s} \\
= & \sum_{\substack{i_{0}+i_{1}+\cdots+i_{m-2}=k \\
i_{1}+2 i_{2}+\cdots+(m-2) i_{m-2} \\
=n-k-2 i-m j-2 c}}\binom{i}{k}\binom{i+j-1}{j}\binom{i+c}{c}\binom{k}{i_{0}, i_{1}, \ldots, i_{m-2}} .
\end{aligned}
$$

- Taking $k=0$ gives $\mathrm{rpc}_{+}(n, m)=\sum_{2 i+m j+2 r=n}\binom{i+j-1}{j}\binom{i+r}{r}$.

More on $\operatorname{rpc}_{+}(n, m)$ for small k or m

- Taking $k=0$ and $m=1$ gives $\mathrm{rpc}_{+}(n, 1)$ [A052547] and $\operatorname{rpc}(n, 1)=\sum_{2 i+j+2 r=n}\binom{i+j}{j}\binom{i+r-1}{r}$ [A028495]; the latter also counts compositions of n with increments only appearing at every second position (such compositions are in bijection with the compositions counted by $\operatorname{rpc}(n, 1)$ by reordering parts appropriately).

More on $\mathrm{rpc}_{+}(n, m)$ for small k or m

- Taking $k=0$ and $m=1$ gives $\operatorname{rpc}_{+}(n, 1)$ [A052547] and $\operatorname{rpc}(n, 1)=\sum_{2 i+j+2 r=n}\binom{i+j}{j}\binom{i+r-1}{r}$ [A028495]; the latter also counts compositions of n with increments only appearing at every second position (such compositions are in bijection with the compositions counted by $\operatorname{rpc}(n, 1)$ by reordering parts appropriately).
- We have $\operatorname{rpc}_{+}(2 n, 2)=F_{2 n+1}$ and $\operatorname{rpc}_{+}(2 n+1,2)=0$, so $\operatorname{rpc}(2 n, 2)=\operatorname{rpc}(2 n+1,2)=F_{2 n+1}$.

More on $\mathrm{rpc}_{+}(n, m)$ for small k or m

- Taking $k=0$ and $m=1$ gives $\mathrm{rpc}_{+}(n, 1)$ [A052547] and $\operatorname{rpc}(n, 1)=\sum_{2 i+j+2 r=n}\binom{i+j}{j}\binom{i+r-1}{r}$ [A028495]; the latter also counts compositions of n with increments only appearing at every second position (such compositions are in bijection with the compositions counted by $\operatorname{rpc}(n, 1)$ by reordering parts appropriately).
- We have $\operatorname{rpc}_{+}(2 n, 2)=F_{2 n+1}$ and $\operatorname{rpc}_{+}(2 n+1,2)=0$, so $\operatorname{rpc}(2 n, 2)=\operatorname{rpc}(2 n+1,2)=F_{2 n+1}$.
- We have $\operatorname{rpc}_{+}(2 n, 4)[A 052534]$ and $\mathrm{rpc}_{+}(2 n+1,4)=0$.

More on $\mathrm{rpc}_{+}(n, m)$ for small k or m

- Taking $k=0$ and $m=1$ gives $\operatorname{rpc}_{+}(n, 1)$ [A052547] and $\operatorname{rpc}(n, 1)=\sum_{2 i+j+2 r=n}\binom{i+j}{j}\binom{i+r-1}{r}$ [A028495]; the latter also counts compositions of n with increments only appearing at every second position (such compositions are in bijection with the compositions counted by $\operatorname{rpc}(n, 1)$ by reordering parts appropriately).
- We have $\operatorname{rpc}_{+}(2 n, 2)=F_{2 n+1}$ and $\operatorname{rpc}_{+}(2 n+1,2)=0$, so $\operatorname{rpc}(2 n, 2)=\operatorname{rpc}(2 n+1,2)=F_{2 n+1}$.
- We have $\mathrm{rpc}_{+}(2 n, 4)$ [A052534] and $\mathrm{rpc}_{+}(2 n+1,4)=0$.
- We have $\operatorname{rpc}_{+}^{k}(n, 1)=0$ and $\operatorname{rpc}_{+}^{k}(n, 2)=\sum_{2 i+2 j=n-k}\binom{i}{k}\binom{2 i+j}{j}$. Thus $\operatorname{rpc}_{+}^{1}(2 n, 2)=0, \operatorname{rpc}_{+}^{1}(2 n+1,2)=\sum_{0 \leq i \leq n} i\binom{n+i}{2 i}$ [A001870], and $\operatorname{rpc}^{1}(2 n+1,2)=\operatorname{rpc}^{1}(2 n+2,2)=\operatorname{rpc}_{+}^{1}(2 n+1,2)$.

Partially anti-palindromic compositions modulo m

- We define $\mathrm{ac}^{k}(n, m), \mathrm{ac}_{+}^{k}(n, m)$, and $\mathrm{ac}_{-}^{k}(n, m)$ by using \equiv instead of $\not \equiv$ in the definition of $\mathrm{pc}^{k}(n, m), \mathrm{pc}_{+}^{k}(n, m)$, and $\mathrm{pc}_{-}^{k}(n, m)$. We show

$$
\begin{aligned}
& \operatorname{ac}_{+}^{k}(n, m)= \sum_{\substack{2 i+j+r(m-1)+s \\
=n-2 k-m c-m d}}(-1)^{r} 2^{j}\binom{i+k}{k}\binom{i}{j}\binom{j}{r}\binom{j+s-1}{s}\binom{k}{c}\binom{k+j+d-1}{d} \\
&=\sum_{\substack{i_{0}+i_{1}+\cdots+i_{m-2}=j \\
i_{1}+2 i_{2}+\cdots+(m-2) i_{m-2} \\
=n-2 k-2 i-j-m c-m d}} 2^{j}\binom{i+k}{k}\binom{i}{j}\binom{j}{i_{0}, \ldots, i_{m-2}}\binom{k}{c}\binom{k+j+d-1}{d} .
\end{aligned}
$$

Partially anti-palindromic compositions modulo m

- We define $\mathrm{ac}^{k}(n, m), \mathrm{ac}_{+}^{k}(n, m)$, and $\mathrm{ac}_{-}^{k}(n, m)$ by using \equiv instead of $\not \equiv$ in the definition of $\mathrm{pc}^{k}(n, m), \mathrm{pc}_{+}^{k}(n, m)$, and $\mathrm{pc}_{-}^{k}(n, m)$. We show

$$
\begin{aligned}
\operatorname{ac}_{+}^{k}(n, m)= & \sum_{\substack{2 i+j+r(m-1)+s \\
=n-2 k-m c-m d}}(-1)^{r} 2^{j}\binom{i+k}{k}\binom{i}{j}\binom{j}{r}\binom{j+s-1}{s}\binom{k}{c}\binom{k+j+d-1}{d} \\
= & \sum_{\substack{i_{0}+i_{1}+\cdots+i_{m-2}=j \\
i_{1}+2 i_{2}+\cdots+(m-2) i_{-2} \\
\\
=n-2 k-2 i-j-m c-m d}} 2^{j}\binom{i+k}{k}\binom{i}{j}\binom{j}{i_{0}, \ldots, i_{m-2}}\binom{k}{c}\binom{k+j+d-1}{d} .
\end{aligned}
$$

- We have another formula for $\operatorname{ac}^{k}(n, m)$:

$$
\operatorname{ac}^{k}(n, m)=\sum_{\substack{3 i+j+r(m-1)+2 s \\=n-2 k-m c-m d}}(-1)^{r} 2^{i}\binom{i+k}{k}\binom{i+j}{j}\binom{i}{r}\binom{i+k+s-1}{s}\binom{k}{c}\binom{i+k+d-1}{d} .
$$

More on $\operatorname{ac}^{k}(n, m)$ and $\mathrm{ac}_{+}^{k}(n, m)$ for small k or m

- Taking $k=0$ gives $\mathrm{ac}_{+}(n, m)$ and $\mathrm{ac}(n, m)$, which are not in OEIS.

More on $\mathrm{ac}^{k}(n, m)$ and $\mathrm{ac}_{+}^{k}(n, m)$ for small k or m

- Taking $k=0$ gives $\mathrm{ac}_{+}(n, m)$ and $\mathrm{ac}(n, m)$, which are not in OEIS.
- For $m=1$ we have ack ${ }_{+}^{k}(n, 1)=\sum_{2 i+c+d=n-2 k}\binom{i+k}{k}\binom{k}{c}\binom{k+d-1}{d}$. A signed version of ac ${ }_{+}^{k}(n, 1)$ gives a Riordan array [A158454], which is the coefficient table of the square of Chebyshev S-polynomials and also sends the Catalan numbers to the all-one sequence.

More on $\mathrm{ac}^{k}(n, m)$ and $\mathrm{ac}_{+}^{k}(n, m)$ for small k or m

- Taking $k=0$ gives $\mathrm{ac}_{+}(n, m)$ and $\mathrm{ac}(n, m)$, which are not in OEIS.
- For $m=1$ we have ack ${ }_{+}^{k}(n, 1)=\sum_{2 i+c+d=n-2 k}\binom{i+k}{k}\binom{k}{c}\binom{k+d-1}{d}$. A signed version of $\mathrm{ac}_{+}^{k}(n, 1)$ gives a Riordan array [A158454], which is the coefficient table of the square of Chebyshev S-polynomials and also sends the Catalan numbers to the all-one sequence.
- We have $\mathrm{ac}_{+}(n, 1)=\left(1+(-1)^{n}\right) / 2$ and for $k=1,2,3,4,5$ we find $\operatorname{ac}_{+}^{k}(n, 1)$ in OEIS [A002620, A001752, A001769, A001780, A001786].

More on $\mathrm{ac}^{k}(n, m)$ and $\mathrm{ac}_{+}^{k}(n, m)$ for small k or m

- Taking $k=0$ gives $\mathrm{ac}_{+}(n, m)$ and $\mathrm{ac}(n, m)$, which are not in OEIS.
- For $m=1$ we have ack ${ }_{+}^{k}(n, 1)=\sum_{2 i+c+d=n-2 k}\binom{i+k}{k}\binom{k}{c}\binom{k+d-1}{d}$. A signed version of $\mathrm{ac}_{+}^{k}(n, 1)$ gives a Riordan array [A158454], which is the coefficient table of the square of Chebyshev S-polynomials and also sends the Catalan numbers to the all-one sequence.
- We have acc $(n, 1)=\left(1+(-1)^{n}\right) / 2$ and for $k=1,2,3,4,5$ we find $\operatorname{ac}_{+}^{k}(n, 1)$ in OEIS [A002620, A001752, A001769, A001780, A001786].
- We have $\operatorname{ac}^{k}(n, 1)=\binom{n}{2 k}$, which counts compositions of n with $2 k$ or $2 k+1$ parts. A combinatorial proof: such compositions are in bijection with binary sequences of length n with exactly $2 k$ ones (if the last digit is 0 , change it to 1 to get a composition with $2 k+1$ parts).

More on $\operatorname{ac}^{k}(n, m)$ and $\mathrm{ac}_{+}^{k}(n, m)$ for small k or m

- Taking $k=0$ gives $\mathrm{ac}_{+}(n, m)$ and $\mathrm{ac}(n, m)$, which are not in OEIS.
- For $m=1$ we have ack ${ }_{+}^{k}(n, 1)=\sum_{2 i+c+d=n-2 k}\binom{i+k}{k}\binom{k}{c}\binom{k+d-1}{d}$. A signed version of $\mathrm{ac}_{+}^{k}(n, 1)$ gives a Riordan array [A158454], which is the coefficient table of the square of Chebyshev S-polynomials and also sends the Catalan numbers to the all-one sequence.
- We have ac. $(n, 1)=\left(1+(-1)^{n}\right) / 2$ and for $k=1,2,3,4,5$ we find $\operatorname{ac}_{+}^{k}(n, 1)$ in OEIS [A002620, A001752, A001769, A001780, A001786].
- We have $\operatorname{ac}^{k}(n, 1)=\binom{n}{2 k}$, which counts compositions of n with $2 k$ or $2 k+1$ parts. A combinatorial proof: such compositions are in bijection with binary sequences of length n with exactly $2 k$ ones (if the last digit is 0 , change it to 1 to get a composition with $2 k+1$ parts).
- For $m=2,3$ or $k=0,1,2$ we cannot find $\operatorname{ac}^{k}(n, m)$ in OEIS.

Reduced partially anti-palindromic compositions modulo m

- Let $\operatorname{rac}^{k}(n, m)$ be the number of equivalence classes of compositions counted by $\mathrm{ac}^{k}(n, m)$ under swaps of the i th part and i th last part for all i. Define $\operatorname{rac}_{+}^{k}(n, m)$ and $\operatorname{rac}_{-}^{k}(n, m)$ similarly. We show that

$$
\begin{aligned}
\operatorname{rac}_{+}^{k}(n, m)= & \sum_{\substack{r(m-1)+s+m d \\
=n-2 k-2 i-j}}(-1)^{r}\binom{i+k}{k}\binom{i}{j}\binom{j}{r}\binom{j+s-1}{s}\binom{k+j+d-1}{d} \\
= & \sum_{\substack{i_{0}+i_{1}+\cdots+i_{m-2}=j \\
i_{1}+2 i_{2}+\cdots+(m-2) i_{m-2} \\
=n-2 k-2 i-j-m d}}\binom{i+k}{k}\binom{i}{j}\binom{j}{i_{0}, \ldots, i_{m-2}}\binom{k+j+d-1}{d} .
\end{aligned}
$$

Reduced partially anti-palindromic compositions modulo m

- Let $\operatorname{rac}^{k}(n, m)$ be the number of equivalence classes of compositions counted by $\mathrm{ac}^{k}(n, m)$ under swaps of the i th part and i th last part for all i. Define $\operatorname{rac}_{+}^{k}(n, m)$ and $\operatorname{rac}_{-}^{k}(n, m)$ similarly. We show that

$$
\begin{aligned}
\operatorname{rac}_{+}^{k}(n, m)= & \sum_{\substack{r(m-1)+s+m d \\
=n-2 k-2 i-j}}(-1)^{r}\binom{i+k}{k}\binom{i}{j}\binom{j}{r}\binom{j+s-1}{s}\binom{k+j+d-1}{d} \\
= & \sum_{\substack{i_{0}+i_{1}+\cdots+i_{m-2}=j \\
i_{1}+2 i_{2}+\cdots+(m-2) i_{m-2} \\
=n-2 k-2 i-j-m d}}\binom{i+k}{k}\binom{i}{j}\binom{j}{i_{0}, \ldots, i_{m-2}}\binom{k+j+d-1}{d} .
\end{aligned}
$$

- We have one more formula for $\operatorname{rac}^{k}(n, m)$:

$$
\operatorname{rac}^{k}(n, m)=\sum_{\substack{r(m-1)+2 s+d m \\=n-2 k-3 i+j}}(-1)^{r}\binom{i+k}{k}\binom{i+j}{j}\binom{i}{r}\binom{i+k+s-1}{s}\binom{i+k+d-1}{d} .
$$

More on $\operatorname{rac}_{+}^{k}(n, m)$ and $\operatorname{rac}^{k}(n, m)$ for $k=0$ or $m=1$

- For $n \geq 2$, the number $\operatorname{rac}_{+}(n, 2)$ counts compositions of $n-2$ with no two adjacent parts of the same parity [A062200].

More on $\operatorname{rac}_{+}^{k}(n, m)$ and $\operatorname{rac}^{k}(n, m)$ for $k=0$ or $m=1$

- For $n \geq 2$, the number $\operatorname{rac}_{+}(n, 2)$ counts compositions of $n-2$ with no two adjacent parts of the same parity [A062200].
- The sequence $\operatorname{rac}(n, 3)$ agrees with a sequence in OEIS [A113435] that does not have any combinatorial interpretation yet.

More on $\operatorname{rac}_{+}^{k}(n, m)$ and $\operatorname{rac}^{k}(n, m)$ for $k=0$ or $m=1$

- For $n \geq 2$, the number $\operatorname{rac}_{+}(n, 2)$ counts compositions of $n-2$ with no two adjacent parts of the same parity [A062200].
- The sequence $\operatorname{rac}(n, 3)$ agrees with a sequence in OEIS [A113435] that does not have any combinatorial interpretation yet.
- We have $\operatorname{rac}_{+}^{k}(n, 1)=\sum_{2 i+j=n-2 k}\binom{i+k}{k}\binom{j+k-1}{j}$. In particular, $\operatorname{rac}_{+}^{1}(2 n, 1)=\operatorname{rac}_{+}^{1}(2 n+1,1)=n(n+1) / 2[$ 0008805] and $\operatorname{rac}_{+}^{2}(n, 1)=\sum_{2 i+j=n-4}\binom{i+2}{2}(j+1)$ [A096338].

More on $\operatorname{rac}_{+}^{k}(n, m)$ and $\operatorname{rac}^{k}(n, m)$ for $k=0$ or $m=1$

- For $n \geq 2$, the number $\operatorname{rac}_{+}(n, 2)$ counts compositions of $n-2$ with no two adjacent parts of the same parity [A062200].
- The sequence $\operatorname{rac}(n, 3)$ agrees with a sequence in OEIS [A113435] that does not have any combinatorial interpretation yet.
- We have $\operatorname{rac}_{+}^{k}(n, 1)=\sum_{2 i+j=n-2 k}\binom{i+k}{k}\binom{j+k-1}{j}$. In particular, $\operatorname{rac}_{+}^{1}(2 n, 1)=\operatorname{rac}_{+}^{1}(2 n+1,1)=n(n+1) / 2[$ 0008805] and $\operatorname{rac}_{+}^{2}(n, 1)=\sum_{2 i+j=n-4}\binom{i+2}{2}(j+1)$ [A096338].
- We have $\operatorname{rac}^{k}(n, 1)=\sum_{2 i+j=n-2 k}\binom{i+k-1}{i}\binom{j+k}{j}$ [A060098]. Special cases include $\operatorname{rac}^{1}(n, 1)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil[A 002620], \operatorname{rac}^{2}(n, 1)$ [A002624], $\operatorname{rac}^{3}(n, 1)$ [A060099], $\operatorname{rac}^{4}(n, 1)$ [A060100], and $\operatorname{rac}^{5}(n, 1)$ [A060101].

More on $\operatorname{rac}_{+}^{k}(n, m)$ and $\operatorname{rac}^{k}(n, m)$ for $k=0$ or $m=1$

- For $n \geq 2$, the number $\operatorname{rac}_{+}(n, 2)$ counts compositions of $n-2$ with no two adjacent parts of the same parity [A062200].
- The sequence $\operatorname{rac}(n, 3)$ agrees with a sequence in OEIS [A113435] that does not have any combinatorial interpretation yet.
- We have $\operatorname{rac}_{+}^{k}(n, 1)=\sum_{2 i+j=n-2 k}\binom{i+k}{k}\binom{j+k-1}{j}$. In particular, $\operatorname{rac}_{+}^{1}(2 n, 1)=\operatorname{rac}_{+}^{1}(2 n+1,1)=n(n+1) / 2[$ 0008805] and $\operatorname{rac}_{+}^{2}(n, 1)=\sum_{2 i+j=n-4}\binom{i+2}{2}(j+1)$ [A096338].
- We have $\operatorname{rac}^{k}(n, 1)=\sum_{2 i+j=n-2 k}\binom{i+k-1}{i}\binom{j+k}{j}$ [A060098]. Special cases include $\operatorname{rac}^{1}(n, 1)=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil[A 002620], \operatorname{rac}^{2}(n, 1)$ [A002624], $\operatorname{rac}^{3}(n, 1)$ [A060099], $\operatorname{rac}^{4}(n, 1)$ [A060100], and $\operatorname{rac}^{5}(n, 1)$ [A060101].
- Any combinatorial explanation for $\operatorname{rac}^{1}(n, 1)=\operatorname{ac}_{+}^{1}(n, 1)$?

Remarks and questions

- Our work provides a uniform framework for various generalizations of palindromic compositions from previous work of Andrews, Just, and Simay. It also has connections with many sequences in OEIS.

Remarks and questions

- Our work provides a uniform framework for various generalizations of palindromic compositions from previous work of Andrews, Just, and Simay. It also has connections with many sequences in OEIS.
- We used Sage to help discover and verify the closed formulas in this work.

Remarks and questions

- Our work provides a uniform framework for various generalizations of palindromic compositions from previous work of Andrews, Just, and Simay. It also has connections with many sequences in OEIS.
- We used Sage to help discover and verify the closed formulas in this work.
- We have combinatorial proofs for most of the positive sum formulas.

Remarks and questions

- Our work provides a uniform framework for various generalizations of palindromic compositions from previous work of Andrews, Just, and Simay. It also has connections with many sequences in OEIS.
- We used Sage to help discover and verify the closed formulas in this work.
- We have combinatorial proofs for most of the positive sum formulas.
- We do not have any combinatorial proofs for the alternating sum formulas. Can this be done via inclusion-exclusion?

Remarks and questions

- Our work provides a uniform framework for various generalizations of palindromic compositions from previous work of Andrews, Just, and Simay. It also has connections with many sequences in OEIS.
- We used Sage to help discover and verify the closed formulas in this work.
- We have combinatorial proofs for most of the positive sum formulas.
- We do not have any combinatorial proofs for the alternating sum formulas. Can this be done via inclusion-exclusion?
- Thank you very much for your attention!

