Modular Catalan Numbers

Jia Huang (joint with Nick Hein)

University of Nebraska at Kearney *E-mail address*: huangj2@unk.edu

September 25, 2015

KU THE UNIVERSITY OF KANSAS

- Introduce the modular Catalan numbers from parenthesizations
- Use (full) binary trees to study the modular Catalan numbers.
- Give connections between the modular Catalan number and other Catalan objects.
- Investigate closed formulas and generating functions of the modular Catalan numbers.
- Questions for future study.

Definition

A *binary operation* * defined on a set X is a function $X \times X \rightarrow X$ sending $(a, b) \in X \times X$ to $a * b \in X$. (Examples: + and -.)

Observation

The expression a * b * c is ambiguous and depends on parentheses: (a * b) * c and a * (b * c) are not equal in general.

Example (Addition and Subtraction)

Addition is *associtiave*: (a + b) + c = a + (b + c). Subtraction is NOT associative:

$$(a-b)-c = a-b-c$$

 $a-(b-c) = a-b+c$

Fact

In general, the number of ways to parenthesize $x_1 * x_2 * \cdots * x_{n+1}$ is the Catalan number $C_n := \frac{1}{n+1} {\binom{2n}{n}}$. (1, 1, 2, 5, 14, 42, ...)

Example (Addition)

Since addition is associtiave, $x_1 + \cdots + x_{n+1}$ is unambiguous for any $n \ge 0$.

Example (Subtraction, n = 3)

$$((a-b)-c)-d = a - b - c - d$$

(a-b)-(c-d) = a - b - c + d
(a-(b-c))-d = a - b + c - d
a-((b-c)-d) = a - b + c + d
a-(b-(c-d)) = a - b + c - d

Observation

Given a binary operation * on a set X, each parentheization of $x_1 * \cdots * x_{n+1}$ gives a function from X^{n+1} to X.

Fact

 Denote by C_{n,*} the number of distinct functions obtained from parenthesizations of x₁ * · · · * x_{n+1}. Then we have 1 ≤ C_{n,*} ≤ C_n.

• For example,
$$C_{n,+} = 1$$
, and $C_{n,-} = 2^{n-1}$.

Definition

- Define a binary operation a (k) b := a + ωb where ω = e^{2πi/k} is a primitive kth root of unity. For example, ① is + and ② is -.
- The (k-)modular Catalan number is $C_{n,k} := C_{n,(k)}$.

Basic Properties

п	0	1	2	3	4	5	6	7	8	9	10	11	12	OEIS
C _{n,1}	1	1	1	1	1	1	1	1	1	1	1	1	1	A000012
$C_{n,2}$	1	1	2	4	8	16	32	64	128	256	512	1024	2048	A000079
$C_{n,3}$	1	1	2	5	13	35	96	267	750	2123	6046	17303	49721	A005773
$C_{n,4}$	1	1	2	5	14	41	124	384	1210	3865	12482	40677	133572	A159772
$C_{n,5}$	1	1	2	5	14	42	131	420	1375	4576	15431	52603	180957	new
$C_{n,6}$	1	1	2	5	14	42	132	428	1420	4796	16432	56966	199444	new
$C_{n,7}$	1	1	2	5	14	42	132	429	1429	4851	16718	58331	205632	new
$C_{n,8}$	1	1	2	5	14	42	132	429	1430	4861	16784	58695	207452	new
Cn	1	1	2	5	14	42	132	429	1430	4862	16796	58786	208012	A000108

Fact

•
$$C_{n,1} = 1$$
 and $C_{n,2} = 2^{n-1}$ for $n \ge 0$.
• $C_{0,k} = C_{1,k} = 1$ for $k \ge 1$.
• $C_{n,k} = C_n$ for $n \le k$.
• $C_{k+1,k} = C_{k+1} - 1$ for $k \ge 1$.
• $C_{k+2,k} = C_{k+2} - k - 4$ for $k \ge 2$.
• $C_{k+3,k} = C_{k+3} - (k^2 + 11k + 30)/2$ for $k \ge 3$.

Binary trees

Observation

Parenthesizations of $x_1 * \cdots * x_{n+1} \leftrightarrow$ to binary trees with n+1 leaves.

Example

Definition

The *skew depth* $d_i(t)$ of the *i*th leaf in a binary tree *t* is the number of steps to the right in the unique downward path from the root of *t* to *i*.

Jia Huang (joint with Nick Hein) (UNK)

Modular Catalan Numbers

Observation

A parenthesization of $x_1 \otimes x_2 \otimes \cdots \otimes x_{n+1}$ is completely determined by the skew depth $d(t) = (d_1, \ldots, d_{n+1})$ of the corresponding tree t modulo k, since this parenthesization may be written as

$$\omega^{\mathsf{d}_1}x_1 + \omega^{\mathsf{d}_2}x_2 + \omega^{\mathsf{d}_3}x_3 + \cdots + \omega^{\mathsf{d}_{n+1}}x_{n+1}.$$

Definition

We say two binary trees with n + 1 leaves are *k*-equivalent if their skew depths are congruent modulo k.

Theorem (Hein and H.)

Each k-equivalence class of binary trees contains exactly one tree avoiding $\operatorname{comb}_{k}^{1}$. For example, $\operatorname{comb}_{4}^{1}$ and $\operatorname{comb}_{4}^{1}$ are given below.

- binary trees with n + 1 leaves avoiding comb¹_k as a subtree,
- I plane trees with n+1 nodes whose non-root nodes have degree less than k,
- Oyck paths of length 2n avoiding DU^k (a down-step followed immediately by k consecutive up-steps) as a subpath,
- partitions with n nonnegative parts bounded by the staircase partition (n-1, n-2,...,1,0) such that each positive number appears fewer than k times,
- Standard 2 × n Young tableaux whose top row avoids contiguous labels of the form i, j+1, j+2,..., j+k for all i < j, and</p>
- permutations of [n] avoiding 1-3-2 and $23 \cdots (k+1)1$.

Definition

A *plane tree* is a rooted tree for which the children of each node are linearly ordered.

Fact

Binary trees with n + 1 leaves correspond to plane trees with n + 1 nodes via Knuth transform (left-child right-sibling representation of plane trees).

Example

- binary trees with n + 1 leaves avoiding comb_k^1 as a subtree,
- I plane trees with n+1 nodes whose non-root nodes have degree less than k,
- Oyck paths of length 2n avoiding DU^k (a down-step followed immediately by k consecutive up-steps) as a subpath,
- partitions with n nonnegative parts bounded by the staircase partition (n-1, n-2,...,1,0) such that each positive number appears fewer than k times,
- Standard 2 × n Young tableaux whose top row avoids contiguous labels of the form i, j+1, j+2,..., j+k for all i < j, and</p>
- permutations of [n] avoiding 1-3-2 and $23 \cdots (k+1)1$.

Definition

A Dyck path of (semi-)length 2n, which is a diagonal lattice path from (0,0) to (2n,0) consisting of n up-steps U = (1,1) and n down-steps D = (1,-1) such that none of the path is below the x-axis.

Fact

Binary trees with n + 1 leaves correspond to Dyck paths of length 2n.

- binary trees with n + 1 leaves avoiding comb_k^1 as a subtree,
- I plane trees with n+1 nodes whose non-root nodes have degree less than k,
- Oyck paths of length 2n avoiding DU^k (a down-step followed immediately by k consecutive up-steps) as a subpath,
- partitions with n nonnegative parts bounded by the staircase partition (n-1, n-2,...,1,0) such that each positive number appears fewer than k times,
- Standard 2 × n Young tableaux whose top row avoids contiguous labels of the form i, j+1, j+2,..., j+k for all i < j, and</p>
- permutations of [n] avoiding 1-3-2 and $23 \cdots (k+1)1$.

Partitions

Definition

- A *partition* if a descreasing sequence of nonnegative integers.
- A partition $\lambda = (\lambda_1, \dots, \lambda_n)$ correspond to a Young diagram with λ_i boxes on its *i*th row.

Fact

Dyck paths of length $2n \leftrightarrow$ partitions $(\lambda_1, \ldots, \lambda_n)$ with $\lambda_i \leq n - i$.

Example

- binary trees with n + 1 leaves avoiding comb_k^1 as a subtree,
- I plane trees with n+1 nodes whose non-root nodes have degree less than k,
- Oyck paths of length 2n avoiding DU^k (a down-step followed immediately by k consecutive up-steps) as a subpath,
- partitions with n nonnegative parts bounded by the staircase partition (n-1, n-2,...,1,0) such that each positive number appears fewer than k times,
- Standard 2 × n Young tableaux whose top row avoids contiguous labels of the form i, j+1, j+2,..., j+k for all i < j, and</p>
- permutations of [n] avoiding 1-3-2 and $23 \cdots (k+1)1$.

Definition

A standard tableau of shape λ is a filling of the Young diagram of λ with 1,2,... such that each row is increasing from left to right and each column is increasing from top to bottom.

Fact

Dyck paths of length $2n \leftrightarrow 2 \times n$ standard tableaux.

- binary trees with n + 1 leaves avoiding comb_k^1 as a subtree,
- I plane trees with n+1 nodes whose non-root nodes have degree less than k,
- Oyck paths of length 2n avoiding DU^k (a down-step followed immediately by k consecutive up-steps) as a subpath,
- partitions with n nonnegative parts bounded by the staircase partition (n-1, n-2,...,1,0) such that each positive number appears fewer than k times,
- Standard 2 × n Young tableaux whose top row avoids contiguous labels of the form i, j+1, j+2,..., j+k for all i < j, and</p>
- permutations of [n] avoiding 1-3-2 and $23 \cdots (k+1)1$.

Permutations

Fact

Binary trees with n + 1 leaves \leftrightarrow permutations of $[n] := \{1, 2, ..., n\}$ avoiding 1-3-2.

Example

The picture below shows a binary tree with internal nodes labeled with [8]; reading these labels gives a permutation 67534821 avoiding 1-3-2.

- binary trees with n + 1 leaves avoiding comb_k^1 as a subtree,
- I plane trees with n+1 nodes whose non-root nodes have degree less than k,
- Oyck paths of length 2n avoiding DU^k (a down-step followed immediately by k consecutive up-steps) as a subpath,
- partitions with n nonnegative parts bounded by the staircase partition (n-1, n-2,...,1,0) such that each positive number appears fewer than k times,
- Standard 2 × n Young tableaux whose top row avoids contiguous labels of the form i, j+1, j+2,..., j+k for all i < j, and</p>
- permutations of [n] avoiding 1-3-2 and $23 \cdots (k+1)1$.

Generalized Motzkin Numbers

For $n \ge 0$ and $k \ge 1$, the generalized Motzkin number $M_{n,k}$ enumerates

- **(**) binary trees with n + 1 leaves avoiding $comb_k$ as a subtree,
- 2 plane trees with n + 1 nodes, each having degree less than k [Takácz],
- Oyck paths of length 2n avoiding U^k (k consecutive up-steps).
- partitions with *n* parts bounded by (n-1, n-2, ..., 1, 0) such that each number appears fewer than *k* times,
- **5** $2 \times n$ standard Young tableaux avoiding k consecutive numbers in the top row, and
- permutations of [n] avoiding 1-3-2 and $12 \cdots k$.

п	0	1	2	3	4	5	6	7	8	9	10	11	12	OEIS
$M_{n,1}$	1	0	0	0	0	0	0	0	0	0	0	0	0	A000007
$M_{n,2}$	1	1	1	1	1	1	1	1	1	1	1	1	1	A000012
$M_{n,3}$	1	1	2	4	9	21	51	127	323	835	2188	5798	15511	A001006
$M_{n,4}$	1	1	2	5	13	36	104	309	939	2905	9118	28964	92940	A036765
$M_{n,5}$	1	1	2	5	14	41	125	393	1265	4147	13798	46476	158170	A036766
$M_{n,6}$	1	1	2	5	14	42	131	421	1385	4642	15795	54418	189454	A036767
$M_{n,7}$	1	1	2	5	14	42	132	428	1421	4807	16510	57421	201824	A036768
M _{n.8}	1	1	2	5	14	42	132	429	1429	4852	16730	58422	206192	A036769
Cn	1	1	2	5	14	42	132	429	1430	4862	16796	58786	208012	A000108

- binary trees with n + 1 leaves avoiding comb_k^1 as a subtree,
- I plane trees with n+1 nodes whose non-root nodes have degree less than k,
- Oyck paths of length 2n avoiding DU^k (a down-step followed immediately by k consecutive up-steps) as a subpath,
- partitions with n nonnegative parts bounded by the staircase partition (n-1, n-2,...,1,0) such that each positive number appears fewer than k times,
- Standard 2 × n Young tableaux whose top row avoids contiguous labels of the form i, j+1, j+2,..., j+k for all i < j, and</p>
- permutations of [n] avoiding 1-3-2 and $23 \cdots (k+1)1$.

Proposition (Hein and H.)

• Recurrence:
$$M_{n,k} = \sum_{0 \le \ell < k} \sum_{n_1 + \dots + n_\ell = n-\ell} M_{n_1,k} \cdots M_{n_\ell,k}$$

• Generating function: $M_k(x) := \sum_{n \ge 0} M_{n,k}$ satisfies

$$M_k(x) = 1 + xM_k(x) + x^2M_k(x)^2 + \cdots + x^{k-1}M_k(x)^{k-1}$$

Closed formula (applying Lagrange inversion to the above equation):

$$M_{n,k} = \frac{1}{n+1} \sum_{\substack{|\lambda|=n\\ \lambda \subseteq (k-1)^{n+1}}} m_{\lambda}(\underbrace{1,\ldots,1}_{n+1}) \\ = \frac{1}{n+1} \sum_{\substack{0 \le j \le n/k}} (-1)^{j} \binom{n+1}{j} \binom{2n-jk}{n}.$$

Proposition (Hein and H.)

The generating function $C_k(x) := \sum_{n \ge 0} C_{n,k}$ satisfies

$$C_k(x) = rac{1}{1 - xM_k(x)} = \sum_{\ell \ge 0} (xM_k(x))^\ell.$$

Theorem (Hein and H.)

• For $n, k \ge 1$ we have

$$C_{n,k} = \sum_{\substack{\lambda \subseteq (k-1)^n \\ |\lambda| < n}} \frac{n - |\lambda|}{n} m_{\lambda}(\underbrace{1, \dots, 1}_{n})$$
$$= \sum_{0 \le j(n-1)/k} \frac{(-1)^j}{n} \binom{n}{j} \binom{2n - jk}{n+1}.$$

• We also have $x(C_k(x)-1)^k - xC_k(x)^k + C_k(x)^{k-1} - C_k(x)^{k-2} = 0.$

Combinatorial Proofs

٥

- Let $w = U^{i_0}DU^{i_1}DU^{i_2}\cdots DU^{i_n}$, with $i_0 > 0$, $i_1, \ldots, i_n \ge 0$, and $i_0 + i_1 + \cdots + i_n = n$.
- Rotation: $w^{*j} := U^{i_0} D U^{i_{j+1}} \cdots D U^{i_n} D U^{i_1} \cdots D U^{i_j}$.

 $w = U^2 D D U D D U \qquad w^{*1} = U^2 D U D D U D \qquad w^{*2} = U^2 D D U D D U \qquad w^{*3} = U^2 D U D D U D D U D D U D D U D D U D D U D D U D D U D D U D D U D D U D D U D D U D D U$

- $\#\{j \in \{0, 1, \dots, n-1\} : w^{*j} \text{ is a Dyck path}\} = i_0.$
- This rotation implies the first formula for $C_{n,k}$.
- Coloring one copy of U among U^{i_0} by blue and assuming DU^k occurs at least j times, we get $\binom{n}{j}\binom{2n-jk}{n+1}$ many lattice paths.
- Applying the above rotation and using inclusion-exclusion we prove the second formula for $C_{n,k}$.

2-Modular Catalan Numbers

• The positive sum formula for $C_{n,k}$ becomes the following when k = 2:

$$2^{n-1} = \sum_{0 \le i \le n-1} \binom{n-1}{i}.$$

- The $C_{n,2} = 2^{n-1}$ binary trees with n+1 leaves avoiding comb_2^1 form a lattice under the *Tamari order*, which is isomorphic to the Boolean algebra of subsets of [n] ordered by inclusion.
- The rank of a binary tree avoiding comb¹/₂ equals the number of non-root internal nodes on its right border.

- The 3-modular Catalan numbers $\{C_{n,3}\}$ count many other objects:
 - I directed n-ominoes in standard position,
 - In-digit base three numbers whose digits sum to n,
 - permutations of [n] avoiding 1-3-2 and 123-4,
 - minimax elements in the affine Weyl group of the Lie algebra \mathfrak{so}_{2n+1} .
- Our positive sum formula for $C_{n,3}$ can be simplified to

$$C_{n,3} = \sum_{0 \le i \le n-1} \binom{n-1}{i} \binom{i}{\lfloor i/2 \rfloor}$$

which was obtained by Gouyou-Beauchamps and Viennot in their study of the objects in ① and by Panyushev in his study of objects ④.

- How is the simplified formula for C_{n,3} related to the modular Catalan objects? Is it possible to generalize this formula to all k ≥ 1?
- Let \$\mathcal{T}_{n,k} := {binary trees with \$n+1\$ leaves avoiding \$\comb_k^1\$}\$ be a subposet of the Tamari lattice. What can be said about this poset? How is this poset related to the \$(n-1)\$-dimensional associahedron?
- Other modular Catalan objects (noncrossing partitions, triangulations of convex polygons, etc.)?
- Other binary operations?
- We know $1 \le C_{n,*} \le C_n$, and $1 = C_{n,*}$ if and only if * is associative. When does $C_{n,*} = C_n$ hold?

Thank you!