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Symmetry
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Symmetric polynomials

Let F be a field (e.g. R, C, Q, Fq, etc).

F[X ] := F[x1, . . . , xn] consists of all polynomials in n variables
x1, . . . , xn with coefficients in F.

The symmetric polynomials are those invariant under all
permutations of the n variables.

Example (n = 3)

The polynomial x2
1 + x2

2 + x2
3 is symmetric.

The polynomial 2x1x2 − x2x3 is not symmetric, because

for w = 231 : w(2x1x2 − x2x3) = 2x2x3 − x3x1.
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Fundamental Theorem of Symmetric Polynomials

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial in n variables can be written in a
unique way as a polynomial in the elementary symmetric
polynomials e1, . . . , en.

Example (n = 3)

f (t) = (t + x1)(t + x2)(t + x3) ( Vieta’s formula)

= t3 + (x1 + x2 + x3︸ ︷︷ ︸
e1

)t2 + (x1x2 + x1x3 + x2x3︸ ︷︷ ︸
e2

)t + x1x2x3︸ ︷︷ ︸
e3

.

x2
1 + x2

2 + x2
3 = e2

1 − 2e2.
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Matrix action on polynomials

 1 0 1
−1 1 2
2 −1 0

 : x1 7→ x1 − x2 + 2x3.

 1 0 1
−1 1 2
2 −1 0

 : x2 7→ x2 − x3.

 1 0 1
−1 1 2
2 −1 0

 : x3 7→ x1 + 2x2.

Permutation matrices: e.g. 231 ↔

0 0 1
1 0 0
0 1 0

.

Jia Huang Polynomial invariants of finite groups of sparse matrices



Invariants under a matrix group

Let G be a finite group of some n by n matrices over F.

The invariant ring F[X ]G consists of all the polynomials in
F[X ] invariant under the matrix group G .

The symmetric group Sn = {n × n permutation matrices}.

Fundamental Theorem of Symmetric Polynomials (restated)

F[X ]Sn = F[e1, . . . , en] is a polynomial algebra in e1, . . . , en.

Polynomial Algebra Problem

Find all finite matrix groups G such that F[X ]G is polynomial.

1/|G | ∈ F: solved (nice case)

1/|G | /∈ F: still open! (tricky case)
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Nice case: reflection groups

Theorem (Chevalley , Shephard , and Todd 1955)

Suppose 1/|G | ∈ F. Then F[X ]G is polynomial if and only if G is
generated by pseudo-reflections (elements fixing a hyperplane).

Example (Symmetry groups of regular polytopes)
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Tricky case?

The symmetric group Sn = {all permutations} has order n!
and its invariant ring F[X ]Sn is polynomial over any field F.

Next, consider the general linear group
GL(n,F) = {all n × n invertible matrices over F}.
Let F = Fq be the finite field of q elements.

|GL(n,Fq)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

|GL(n,Fq)| = 0 in Fq.

What are the polynomial invariants of GL(n,Fq)?
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Invariants of GL(n,Fq)

Theorem (L. E. Dickson 1911)

Let G = GL(n,Fq). Then Fq[X ]G = Fq[c1, . . . , cn] is a polynomial
algebra in Dickson’s invariants c1, . . . , cn.

Example (n = 2, q = 2)

f (t) = (t + 0x1 + 0x2)(t + x1 + 0x2)(t + 0x1 + x2)(t + x1 + x2)

= t4 + (x2
1 + x2

2 + x1x2︸ ︷︷ ︸
c1

)t2 + (x2
1 x2 + x1x2

2︸ ︷︷ ︸
c2

)t.
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Fundamental Theorem of Symmetric Polynomials

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial in n variables can be written in a
unique way as a polynomial in the elementary symmetric
polynomials e1, . . . , en.

Example (n = 3)

f (t) = (t + x1)(t + x2)(t + x3) ( Vieta’s formula)

= t3 + (x1 + x2 + x3︸ ︷︷ ︸
e1

)t2 + (x1x2 + x1x3 + x2x3︸ ︷︷ ︸
e2

)t + x1x2x3︸ ︷︷ ︸
e3

.

x2
1 + x2

2 + x2
3 = e2

1 − 2e2.
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Subgroups of GL(n,Fq) whose invariant ring is polynomial


1 ∗ ∗ ∗ ∗

1 ∗ ∗ ∗
1 ∗ ∗

1 ∗
1


(Bertin 1965)



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗


(Mui 1975, Hewett 1996)



∗ ∗
∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗
∗ ∗


(Potechin 2008)

1
1

1
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


(Steinberg 1987)


1

. . .

1
∗ ∗ 0 0 1


(Smith 1995)
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A common generalization

A sparsity pattern σ assigns a set σ(i , j) ⊆ F to each pair
(i , j) with 1 ≤ i , j ≤ n.

GLσ(n,F) = {[aij ] ∈ GL(n,F) : aij ∈ σ(i , j)}.
This includes all previous examples, and gives new examples:(

F33 F36

0 F32

)
⊂ GL(2,F36).
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Invariants of sparse matrices

Example

If G =

(
F33 F36

0 F32

)
then F36 [x1, x2]G is a polynomial algebra in

x33−1
1 and (x36

2 − x36−1
1 x2)32−1.

Theorem 1 (H.)

If G = GLσ(n,F) is a finite group, then F[X ]G is polynomial.

Proof.

Use matrix operations and some commutative algebra.
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Polynomial gluing construction

If a matrix group G can be written as

G =

(
GX Φ
0 GY

)
⊂ GL(m + n,F)

where

GX is a subgroup of GL(m,F),

GY is a subgroup of GL(n,F),

Φ is a subspace of Fm×n,

with some extra technical conditions,

then we say that G is a polynomial gluing of GX and GY .
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Invariants after gluing

Theorem 2 (H.)

Let G be a polynomial gluing of GX and GY . If both F[X ]GX and
F[Y ]GY are polynomial, and so is F[X ,Y ]G .

Example (⇒ Theorem 1)

A finite group GLσ(n,F) of sparse matrices is essentially a
polynomial gluing of various finite general linear groups GL(m,Fq).
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More examples of polynomial gluing

Example

Nakajima (1983) found all p-groups G in GL(n,Fp) with a
polynomial invariant ring Fp[X ]G , which turn out to be polynomial
gluings of copies of the trivial group {1F}.

Example

The symmetric group Sn has a polynomial invariant ring
F[X ]Sn = F[e1, . . . , en], but cannot be obtained from polynomial
gluing if n ≥ 3 and 1/n /∈ F.
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Some combinatorics

Proposition

Suppose that F[X ]G is a polynomial algebra in f1, . . . , fn. Then

one can choose f1, . . . , fn to be homogeneous,

their degrees d1, . . . , dn are uniquely determined,

|G | = d1 · · · dn (e.g. n! = 1 · 2 · · · n), and

The Hilbert series of the invariant ring F[X ]G is∑
d≥0

dimF(F[X ]G )d · td =
1

(1− td1) · · · (1− tdn)
.
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Signed permutations

S±
n = {signed permutations}; |S±

n | = n! · 2n.

Example: S±
2 = {12, 21, 1̄2, 2̄1, 12̄, 21̄, 1̄2̄, 2̄1̄}.

S±
n is the symmetry group of a hypercube.

The invariant ring of S±
n is a polynomial algebra in

{ei (x2
1 , . . . , x

2
n ) : 1 ≤ i ≤ n}.
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Fundamental Theorem of Symmetric Polynomials

Fundamental Theorem of Symmetric Polynomials

Any symmetric polynomial in n variables can be written in a
unique way as a polynomial in the elementary symmetric
polynomials e1, . . . , en.

Example (n = 3)

f (t) = (t + x1)(t + x2)(t + x3) ( Vieta’s formula)

= t3 + (x1 + x2 + x3︸ ︷︷ ︸
e1

)t2 + (x1x2 + x1x3 + x2x3︸ ︷︷ ︸
e2

)t + x1x2x3︸ ︷︷ ︸
e3

.

x2
1 + x2

2 + x2
3 = e2

1 − 2e2.
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Invariants of GL(n,Fq)

Theorem (L. E. Dickson 1911)

Let G = GL(n,Fq). Then Fq[X ]G = Fq[c1, . . . , cn] is a polynomial
algebra in Dickson’s invariants c1, . . . , cn.

Example (n = 2, q = 2)

f (t) = (t + 0x1 + 0x2)(t + x1 + 0x2)(t + 0x1 + x2)(t + x1 + x2)

= t4 + (x2
1 + x2

2 + x1x2︸ ︷︷ ︸
c1

)t2 + (x2
1 x2 + x1x2

2︸ ︷︷ ︸
c2

)t.
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Generalization?

Sn → GL(n,Fq); S±
n → O(n,Fq), Sp(n,Fq).

The invariants of finite orthogonal/symplectic groups form a
complete intersection (weaker than a polynomial algebra).

I can define sparsity subgroups of O(n,Fq) and Sp(n,Fq).

What about their invariants?
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Thank you!
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