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1 Introduction

There is a wonderful article, “Down with Determinants!,” by Sheldon Axler that “shows how
linear algebra can be done better without determinants.” [1] The article received the Lester R.
Ford Award for expository writing from the Mathematical Association of America.

Axler’s article shows how to prove some standard results in linear algebra without using
determinants, but it doesn’t show how to do calculations without using determinants. My
article will show you two ways to find the eigenvalues of a matrix without using determinants.
The first method (Section 2) uses only row operations; the second method (Section 3) applies
ideas from Axler’s article. A complete description of the second method is in an article by
William A. McWorter and Leroy F. Meyers [2]; I do not know of a reference for the first
method. Section 4 concludes with a method for solving generalized eigenvalue problems.

This article started as class notes for my spring 2005 linear algebra class. Since then, I more
than doubled the length, but I kept some of the original style of the notes.

2 The row reduction method

A numberz is an eigenvalue of a square matrixA providedA−zI is singular. The best way to
determine if a matrix is singular is to reduce it to a triangular form. So it seems that a good
scheme for finding the eigenvalues of a matrixA would be to find a triangular form ofA−zI.
We’ll show thatA− zI has a triangular form with a “simple” representation, but finding it
requires a trick. I’ll show you how to do it for a 3×3 matrix. You’ll need to convince yourself
that the process can be done for an arbitrary square matrix. To illustrate, let’s try to reduce1−z 2 1

1 3−z 1
1 4 −1−z


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to a triangular form. Ifz 6= 1, we could use the 1,1 entry as a pivot and do the row operations
R2←R2− 1

1−zR1 andR3←R3− 1
1−zR1. The casez= 1 would need to be handled in a separate

calculation. This plan would result in a triangular form that is not simple (multiple cases). A
better scheme would be to swap rows 1 and 2. This gives 1 3−z 1

1−z 2 1
1 4 −1−z

 .

Now the 1,1 entry is a nonzero constant; we’ll call 1 a good pivot1 because it is nonzero and
constant. The row operationsR2← R2− (1−z)R1 andR3← R3−R1 place zeros below the
diagonal in the first column; thus1 3−z 1

0 2− (1−z) (3−z) z
0 z+1 −z−2

 =

1 3−z 1
0 −z2 +4z−1 z
0 z+1 −2−z

 .

Now we have trouble. The 2,2 and the 3,2 entries are both bad pivots (they are non-constant).
This time, a row swap will not place a good pivot in the 2,2 position. We could try swapping
columns, but for this matrix it doesn’t help because every entry in the 2,2 sub-matrix2 is a
bad pivot. It’s time for a trick. We’ll try to do a row operation of the formR2← R2− θR3

that makes the 2,2 entry a good pivot. What value should we choose forθ? After the row
operation, the 2,2 entry is

(−z2 +4z−1)−θ(z+1).

We’d like the 2,2 entry to be constant and nonzero. Can this be arranged? Certainly, defineθ
to be

θ =
(
−z2 +4z−1

)
÷ (z+1) =−z+5,

where by÷we mean the quotient without the remainder. The row operationR2← R2− (−z+5)R3

yields1 3−z 1
0 −6 −z2 +4z+10
0 z+1 −z−2

 .

We were successful; the 2,2 entry is a good pivot. It’s now possible to doR3← R3 + z+1
6 R2.

The result is1 3−z 1
0 −6 −z2 +4z+10
0 0 −1

6

(
z3−3z2−8z+2

)
 .

1My students will recognize the terms “good pivot” and “bad pivot.”
2The 2,2 sub-matrix is everything on row 2 and below and everything in column 2 and to the right. This concept

generalizes to the i,j sub-matrix.
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This is the echelon form we desired.
The characteristic polynomial is the product of the diagonal entries times(−1)k, wherek is

the number of row swaps. We did one row swap, so the characteristic polynomial is

z 7→ −z3 +3z2 +8z−2.

Let’s find the eigenvectors. To start, it might seem that we should first find the roots of the
characteristic polynomial. Any computer algebra system will tell us the solutions, but they are
big ugly messes. Here is one root3
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What does a mathematician do when things get unbearably messy? We give the messy thing
a name and push forward. Let’s try this approach. Letz1 be an eigenvalue. In the row reduced
matrix, substitutez→ z1, and use the fact thatz3

1−3z2
1−8z1+2= 0. Now do back substitution

on the matrix1 3−z1 1
0 −6 −z2

1 +4z1 +10
0 0 −1

6

(
z3
1−3z2

1−8z1 +2
)
 =

1 3−z1 1
0 −6 −z2

1 +4z1 +10
0 0 0

 .

Naming the unknownsa,b,c, we see thatc is free. Choosingc = 0 makesa = 0 andb = 0.
Eigenvectors must be nonzero, so the choicec = 0 doesn’t work. Choosingc = 1 gives

b =−1
6

z2
1 +

2
3

z1 +
5
3
,

a =−(3−z1)
(
−1

6
z2
1 +

2
3

z1 +
5
3

)
−1.

We could stop now, but the expression fora is cubic in z1. Expandinga and substituting
z3
1→ 3z3

1 +8z1−2 gives a simpler representation fora. It is

a =
2
3

z2
1−

5
3

z1−
17
3

.

The eigenvector isa
b
c

 =

−17
3

5
3
1

+z1

−5
3

2
3
0

+z2
1

 2
3
−1

6
0

 , (1)

wherez1 is any eigenvalue. Since the characteristic polynomial has three distinct roots, we
were able to findall the eigenvectors using only one back substitution!

3You might guess that the imaginary part of this number is nonzero, but it’s not. Remember that every cubic
polynomial with real coefficients has at least one real root. Of the three roots of the polynomial, I chose to
display the real root.
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Does the row reduction method work when the characteristic polynomial has a degenerate
root? It does, but there is a slight twist. To illustrate, let’s find the eigenvectors of1 −1 −3

0 2 0
1 1 5

 .

We begin by subtractingzI. Swapping rows 1 and 3 gives 1 1 5−z
0 2−z 0

1−z −1 −3

 .

Next, doR3← R3− (1−z)R1; thus1 1 5−z
0 2−z 0
0 z−2 −z2 +6z−8

 .

Following the trick we did in the first example, we now applyR2← R2−θR3, where

θ = (2−z)÷ (z−2) =−1.

The result is1 1 5−z
0 0 z2−6z+8
0 z−2 −z2 +6z−8

 .

This time the trick doesn’t make the 2,2 entry a good pivot (the slight twist). Nevertheless,
swapping rows 2 and 3 gives the triangular form1 1 5−z

0 z−2 −z2 +6z−8
0 0 z2−6z+8

 =

1 1 5−z
0 z−2 −(z−2)(z−4)
0 0 (z−4)(z−2)


that we were trying to find. The characteristic polynomial is

z 7→ −(z−4)(z−2)2 .

The eigenvalues are 2 and 4. Unlike the first example, we can’t find all three eigenvec-
tors with a single back substitution. Substitutingz→ 2 and solving gives the eigenvectors−1

1
0

 and

−3
0
1

 . The geometric multiplicity of this eigenvalue is 2 because the 2,2 and the

3,3 entries of the triangularized matrix have a common root. For this example, the common
root was easy to identify; for more involved problems, it might be necessary to use the poly-
nomial resultant to detect the common roots. [3] Substitutingz→ 4 gives the eigenvector−1

0
1

 .
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3 Method of McWorter and Meyers

Our second method comes from “Computing eigenvalues and eigenvectors without determi-
nants,” by William A. McWorter and Leroy F. Meyers. [2] After reading just two pages out
of ten, I had a slap-on-the-forehead moment. The article uses an idea that I’ve used to prove
theorems, but I had never connected the idea to a computational method.

Here is the idea. LetA be a square matrix, and letx be any nonzero vector. Find the greatest
integerm such that the set

{x, Ax, A2x, . . . , Am−1x}

is linearly independent. There are scalarsα0, . . . ,αm−1 such that(
α0I +α1A+α2A2 + · · ·+αm−1Am−1 +Am)

x = 0.

Equivalently, there are scalarsz0, . . . ,zm such that

(A−z0I)(A−z1I) · · ·(A−zmI)x = 0.

Either(A−z1I) · · ·(A−zmI)x is an eigenvector ofA with eigenvaluez0, or

(A−z1I) · · ·(A−zmI)x = 0.

The left side of this equation is anontrivial linear combination of thelinearly independentset
{x, Ax, A2x, . . . , Am−1x}. Thus(A−z1I) · · ·(A−zmI)x 6= 0. This shows that(A−z1I) · · ·(A−zmI)x
is an eigenvector ofA corresponding to the eigenvaluez0.

Let’s try this method on the example we worked using the row reduction method. Let

A =

1 2 1
1 3 1
1 4 −1

 .

Choosex0 =

1
0
0

, and do row reduction on the matrix with columnsx0, Ax0, A2x0, A3x0.

We have1 1 4 18
0 1 5 23
0 1 4 20

∼
1 1 4 18

0 1 5 23
0 0 −1 −3

∼
1 0 0 −2

0 1 0 8
0 0 1 3

 .

From this we discover that 2x0−8Ax0−3A2x0 +A3x0 = 0. Consequently,(
2I −8A−3A2 +A3)x0 = 0.

Factor this as

(A−z1I)(A−z2I)(A−z3I)x0 = 0,
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wherez1,z2, andz3 are zeros of the polynomialz 7→ 2−8z−3z2 +z3. The eigenvector corre-
sponding to the eigenvaluez1 is

(A−z2I)(A−z3I)x0 =

z2z3−z3−z2 +4
−z3−z2 +5
−z3−z2 +4

 .

Showing that this vector is parallel to [see Eq. (1)]−17
3

5
3
1

+z1

−5
3

2
3
0

+z2
1

 2
3
−1

6
0

 ,

is an algebraic nightmare. I’ve been able to verify it numerically, but I have not been able to
prove it.

4 Generalized eigenvalues

Let A andB be square matrices with the same size. A complex numberz is a generalized
eigenvalueof (A,B) providedA−zBis singular. Determinants give a quick characterization of
the generalized eigenvalues;z is a generalized eigenvalue of(A,B) provided det(A−zB) = 0.

Can the computational method given in McWorter and Meyers be extended to find gener-
alized eigenvalues? Can Axler’s proofs be modified to develop a theory of generalized eigen-
values without resorting to determinants? I don’t know. But I do know that the row operation
method given in this article can be used to find generalized eigenvalues. Again, I demonstrate
this by way of an example.

Let’s find the generalized eigenvalues of(A,B), where4

A =

1 2 3
4 5 6
7 8 9

 , B =

1 0 1
0 1 0
1 0 1

 .

We need to row reduce1−z 2 3−z
4 5−z 6

7−z 8 9−z

 .

Swapping rows 1 and 2 and eliminating in the first column yields4 5−z 6

0 −z2

4 + 3z
2 + 3

4
z
2 + 3

2

0 −z2

4 +3z− 3
4

z
2−

3
2

 .

4WhenB is invertible, the generalized eigenvalues of(A,B) are the eigenvalues ofAB−1. In this example, the
matrixB is singular.
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To eliminate in the second column, it would be advantageous to swap the second and third
columns. Doing so would place first degree polynomials in the 2,2 and 3,2 positions. Instead
of swapping columns, let’s try to proceed as before. The quotient (without remainder) of the
2,2 entry divided by the 3,2 entry is 1. Thus we do the row operationR2←R2−R1. The result
is 4 5−z 6

0 3
2−

3z
2 3

0 −z2

4 +3z− 3
4

z
2−

3
2

 .

The second column still does not have a good pivot. What do we do? We use our trick again,
but this time, we apply it to the third row. (The 3,2 entry has the greatest degree.) The quotient
of the 3,2 and the 2,2 entries isz−11

6 . The row operationR3← R3− z−11
6 R2 gives4 5−z 6

0 3
2−

3z
2 3

0 2 4

 .

Finally, the second column has a good pivot. Swapping the second and third rows, and elimi-
nating in the second column gives the triangular form4 5−z 6

0 2 4
0 0 3z

 .

The only generalized eigenvalue is 0. As a check, we have

det

1−z 2 3−z
4 5−z 6

7−z 8 9−z

 = 24z.
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6 Conclusion

As presented in linear algebra books, all computations, except eigenvalues, rely on row reduc-
tion. Why should the eigenvalue problem be any different? This article shows how to solve
both eigenvalue and generalized eigenvalue problems using a pure row reduction method.

One method that is not discussed in this article is due to Bareiss. [5] His method reduces a
matrix to triangular form, but it changes the determinant. For example, applying his method
to the matrix[

1−z 2
3 4−z

]
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yields the triangular matrix[
1−z 2

0 z2−5z−2

]
.

Based on the triangular form, it might seem that 1 is an eigenvalue of

[
1 2
3 4

]
, but it is not.

You may download software (written in Maxima [4]) for the row reduction method from
my web page. [6]

I end with a quote from Sheldon Axler: “Down with determinants!”
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