Tiling the integers

Jia Huang

University of Nebraska at Kearney
E-mail address: huangj2@unk.edu

March 2019
We can tile the set \mathbb{Z} of all integers with translates of $S = \{0, 1\}$.

Coven and Meyerowitz (1999) generalized the result of Newman to the case $|S| = p^a q^b$ for two primes p, q.

Example: $S = \{0, 1, 2\}$ works but $S = \{0, 1, 3\}$ does not work.

Example: $S = \{1, 4, 8, 13\}$ works but $S = \{1, 4, 8, 15\}$ does not work.

Observation: We may assume $0 \in S$, without loss of generality.

If we can tile \mathbb{Z} with translates of S, the density of the tiling is $1/|S|$.

Example: Tiling \mathbb{Z} with translates of $S = \{0, 1, 2\}$ has a density $1/3$.

Jia Huang (UNK)
Tiling the Integers without overlaps

- We can tile the set \mathbb{Z} of all integers with translates of $S = \{0, 1\}$.
- When can we tile \mathbb{Z} with translates of a finite set $S \subseteq \mathbb{Z}$?

Example: $S = \{0, 1, 2\}$ works but $S = \{0, 1, 3\}$ does not work.

Example: $S = \{1, 4, 8, 13\}$ works but $S = \{1, 4, 8, 15\}$ does not work.

Observation: We may assume $0 \in S$, without loss of generality.

If we can tile \mathbb{Z} with translates of S, the density of the tiling is $1/|S|$.

Example: Tiling \mathbb{Z} with translates of $S = \{0, 1, 2\}$ has a density $1/3$.

Jia Huang (UNK)
We can tile the set \mathbb{Z} of all integers with translates of $S = \{0, 1\}$.

When can we tile \mathbb{Z} with translates of a finite set $S \subseteq \mathbb{Z}$?

Observation: We may assume $0 \in S$, without loss of generality.

If we can tile \mathbb{Z} with translates of S, the density of the tiling is $1/|S|$.

Example: Tiling \mathbb{Z} with translates of $S = \{0, 1, 2\}$ has a density $1/3$.
Tiling the Integers without overlaps

- We can tile the set \mathbb{Z} of all integers with translates of $S = \{0, 1\}$.
- When can we tile \mathbb{Z} with translates of a finite set $S \subseteq \mathbb{Z}$?
- Coven and Meyerowitz (1999) generalized the result of Newman to the case $|S| = p^a q^b$ for two primes p, q.

Example: $S = \{0, 1, 2\}$ works but $S = \{0, 1, 3\}$ does not work.

Example: $S = \{1, 4, 8, 13\}$ works but $S = \{1, 4, 8, 15\}$ does not work.

Observation: We may assume $0 \in S$, without loss of generality.

If we can tile \mathbb{Z} with translates of S, the density of the tiling is $1/|S|$.

Example: Tiling \mathbb{Z} with translates of $S = \{0, 1, 2\}$ has a density $1/3$.

Jia Huang (UNK)
Tiling the integers
March 2019 2 / 4
We can tile the set \mathbb{Z} of all integers with translates of $S = \{0, 1\}$.

When can we tile \mathbb{Z} with translates of a finite set $S \subseteq \mathbb{Z}$?

Coven and Meyerowitz (1999) generalized the result of Newman to the case $|S| = p^a q^b$ for two primes p, q.

Example: $S = \{0, 1, 2\}$ works but $S = \{0, 1, 3\}$ does not work.
We can tile the set \mathbb{Z} of all integers with translates of $S = \{0, 1\}$.

When can we tile \mathbb{Z} with translates of a finite set $S \subseteq \mathbb{Z}$?

Coven and Meyerowitz (1999) generalized the result of Newman to the case $|S| = p^a q^b$ for two primes p, q.

Example: $S = \{0, 1, 2\}$ works but $S = \{0, 1, 3\}$ does not work.

Example: $S = \{1, 4, 8, 13\}$ works but $S = \{1, 4, 8, 15\}$ does not work.
Tiling the Integers without overlaps

- We can tile the set \(\mathbb{Z} \) of all integers with translates of \(S = \{0, 1\} \).
- When can we tile \(\mathbb{Z} \) with translates of a finite set \(S \subseteq \mathbb{Z} \)?
- Newman (1977) solved this problem when \(|S| = p^a \) for some prime \(p \).
- Coven and Meyerowitz (1999) generalized the result of Newman to the case \(|S| = p^a q^b \) for two primes \(p, q \).
- Example: \(S = \{0, 1, 2\} \) works but \(S = \{0, 1, 3\} \) does not work.
- Example: \(S = \{1, 4, 8, 13\} \) works but \(S = \{1, 4, 8, 15\} \) does not work.
- Observation: We may assume \(0 \in S \), without loss of generality.
We can tile the set \(\mathbb{Z} \) of all integers with translates of \(S = \{0, 1\} \).

When can we tile \(\mathbb{Z} \) with translates of a finite set \(S \subseteq \mathbb{Z} \)?

Newman (1977) solved this problem when \(|S| = p^a \) for some prime \(p \).

Coven and Meyerowitz (1999) generalized the result of Newman to the case \(|S| = p^a q^b \) for two primes \(p, q \).

Example: \(S = \{0, 1, 2\} \) works but \(S = \{0, 1, 3\} \) does not work.

Example: \(S = \{1, 4, 8, 13\} \) works but \(S = \{1, 4, 8, 15\} \) does not work.

Observation: We may assume \(0 \in S \), without loss of generality.

If we can tile \(\mathbb{Z} \) with translates of \(S \), the **density** of the tiling is \(1/|S| \).
We can tile the set \mathbb{Z} of all integers with translates of $S = \{0, 1\}$.

When can we tile \mathbb{Z} with translates of a finite set $S \subseteq \mathbb{Z}$?

Coven and Meyerowitz (1999) generalized the result of Newman to the case $|S| = p^aq^b$ for two primes p, q.

Example: $S = \{0, 1, 2\}$ works but $S = \{0, 1, 3\}$ does not work.

Example: $S = \{1, 4, 8, 13\}$ works but $S = \{1, 4, 8, 15\}$ does not work.

Observation: We may assume $0 \in S$, without loss of generality.

If we can tile \mathbb{Z} with translates of S, the **density** of the tiling is $1/|S|$.

Example: Tiling \mathbb{Z} with translates of $S = \{0, 1, 2\}$ has a density $1/3$.
We have to allow overlaps to tile \(\mathbb{Z} \) with translates of \(S = \{0, 1, 3\} \).
We have to allow overlaps to tile \mathbb{Z} with translates of $S = \{0, 1, 3\}$.

The smallest density of such a tiling is $\gamma(\mathbb{Z}, S) = 2/5 > 1/3$.

Theorem (H. 2019+): If k is a positive integer then $\gamma(\mathbb{Z}, \{0, 1, 3k+2\}) = 1/3$.

Observation: If $s \mid t$ then $\gamma(\mathbb{Z}, \{0, s, t\}) = \gamma(\mathbb{Z}, \{0, 1, t/s\})$.

Problem: Determine $\gamma(\mathbb{Z}, \{0, s, t\})$ with $s \not\mid t$ (e.g., $S = \{0, 2, 3\}$).
We have to allow overlaps to tile \(\mathbb{Z} \) with translates of \(S = \{0, 1, 3\} \).

The smallest density of such a tiling is \(\gamma(\mathbb{Z}, S) = \frac{2}{5} > \frac{1}{3} \).

If \(k \) is an integer then \(\gamma(\mathbb{Z}, \{0, 1, 3k + 2\}) = \frac{1}{3} \).
We have to allow overlaps to tile \mathbb{Z} with translates of $S = \{0, 1, 3\}$.

The smallest density of such a tiling is $\gamma(\mathbb{Z}, S) = 2/5 > 1/3$.

If k is an integer then $\gamma(\mathbb{Z}, \{0, 1, 3k + 2\}) = 1/3$.

Theorem (H. 2019+): If k is a positive integer then

$$\gamma(\mathbb{Z}, \{0, 1, 3k\}) = \gamma(\mathbb{Z}, \{0, 1, -3k + 1\}) = \frac{2k}{6k - 1},$$

$$\gamma(\mathbb{Z}, \{0, 1, 3k + 1\}) = \gamma(\mathbb{Z}, \{0, 1, -3k\}) = \frac{k + 1}{3k + 2}.$$
Tiling the integers with overlaps

- We have to allow overlaps to tile \(\mathbb{Z} \) with translates of \(S = \{0, 1, 3\} \).
- The smallest density of such a tiling is \(\gamma(\mathbb{Z}, S) = \frac{2}{5} > \frac{1}{3} \).
- If \(k \) is an integer then \(\gamma(\mathbb{Z}, \{0, 1, 3k+2\}) = \frac{1}{3} \).
- Theorem (H. 2019+): If \(k \) is a positive integer then
 \[
 \gamma(\mathbb{Z}, \{0, 1, 3k\}) = \gamma(\mathbb{Z}, \{0, 1, -3k+1\}) = \frac{2k}{6k-1},
 \]
 \[
 \gamma(\mathbb{Z}, \{0, 1, 3k+1\}) = \gamma(\mathbb{Z}, \{0, 1, -3k\}) = \frac{k+1}{3k+2}.
 \]
- Observation: If \(s \mid t \) then \(\gamma(\mathbb{Z}, \{0, s, t\}) = \gamma(\mathbb{Z}, \{0, 1, t/s\}). \)
We have to allow overlaps to tile \(\mathbb{Z} \) with translates of \(S = \{0, 1, 3\} \).

The smallest density of such a tiling is \(\gamma(\mathbb{Z}, S) = \frac{2}{5} > \frac{1}{3} \).

If \(k \) is an integer then \(\gamma(\mathbb{Z}, \{0, 1, 3k + 2\}) = \frac{1}{3} \).

Theorem (H. 2019+): If \(k \) is a positive integer then

\[
\gamma(\mathbb{Z}, \{0, 1, 3k\}) = \gamma(\mathbb{Z}, \{0, 1, -3k + 1\}) = \frac{2k}{6k - 1},
\]

\[
\gamma(\mathbb{Z}, \{0, 1, 3k + 1\}) = \gamma(\mathbb{Z}, \{0, 1, -3k\}) = \frac{k + 1}{3k + 2}.
\]

Observation: If \(s \mid t \) then \(\gamma(\mathbb{Z}, \{0, s, t\}) = \gamma(\mathbb{Z}, \{0, 1, t/s\}) \).

Problem: Determine \(\gamma(\mathbb{Z}, \{0, s, t\}) \) with \(s \nmid t \) (e.g., \(S = \{0, 2, 3\} \)).
Thank you!