Integer Tillings and Domination Ratio

Jia Huang

University of Nebraska at Kearney

E-mail address: huangj2@unk.edu

June 2019
A finite set $S \subseteq \mathbb{Z}$ tiles the integers if there exists a set $D \subseteq \mathbb{Z}$ such that $\mathbb{Z} = S \oplus D := \bigcup_{d \in D} (S + d)$.

Example: $S = \{0, 1, 2\}$ tiles the integers, but $S = \{0, 1, 3\}$ does not.

Newman (1977) determined whether a given set S with cardinality $|S| = p^a$ for some prime p can tile the integers.

Coven and Meyerowitz (1999) generalized the result of Newman to the case $|S| = p^a q^b$ for two primes p, q.

Example: $S = \{1, 4, 8, 13\}$ tiles the integers, but $S = \{1, 4, 8, 15\}$ does not.

Observation: We may assume $0 \in S$, without loss of generality.
A finite set $S \subseteq \mathbb{Z}$ tiles the integers if there exists a set $D \subseteq \mathbb{Z}$ such that $\mathbb{Z} = S \oplus D := \bigcup_{d \in D} (S + d)$.

Example: $S = \{0, 1, 2\}$ tiles the integers, but $S = \{0, 1, 3\}$ does not.
Tiling the Integers without overlaps

- A finite set \(S \subseteq \mathbb{Z} \) tiles the integers if there exists a set \(D \subseteq \mathbb{Z} \) such that \(\mathbb{Z} = S \oplus D := \bigcup_{d \in D} (S + d) \).
- Example: \(S = \{0, 1, 2\} \) tiles the integers, but \(S = \{0, 1, 3\} \) does not.
- Newman (1977) determined whether a given set \(S \) with cardinality \(|S| = p^a \) for some prime \(p \) can tile the integers.
A finite set $S \subseteq \mathbb{Z}$ tiles the integers if there exists a set $D \subseteq \mathbb{Z}$ such that $\mathbb{Z} = S \oplus D := \bigcup_{d \in D} (S + d)$.

Example: $S = \{0, 1, 2\}$ tiles the integers, but $S = \{0, 1, 3\}$ does not.

Newman (1977) determined whether a given set S with cardinality $|S| = p^a$ for some prime p can tile the integers.

Coven and Meyerowitz (1999) generalized the result of Newman to the case $|S| = p^a q^b$ for two primes p, q.
A finite set $S \subseteq \mathbb{Z}$ tiles the integers if there exists a set $D \subseteq \mathbb{Z}$ such that $\mathbb{Z} = S \oplus D := \bigsqcup_{d \in D} (S + d)$.

Example: $S = \{0, 1, 2\}$ tiles the integers, but $S = \{0, 1, 3\}$ does not.

Newman (1977) determined whether a given set S with cardinality $|S| = p^a$ for some prime p can tile the integers.

Coven and Meyerowitz (1999) generalized the result of Newman to the case $|S| = p^a q^b$ for two primes p, q.

Example: $S = \{1, 4, 8, 13\}$ tiles the integers, but $S = \{1, 4, 8, 15\}$ does not.
A finite set \(S \subseteq \mathbb{Z} \) *tiles the integers* if there exists a set \(D \subseteq \mathbb{Z} \) such that \(\mathbb{Z} = S \oplus D := \bigcup_{d \in D} (S + d) \).

Example: \(S = \{0, 1, 2\} \) tiles the integers, but \(S = \{0, 1, 3\} \) does not.

Newman (1977) determined whether a given set \(S \) with cardinality \(|S| = p^a \) for some prime \(p \) can tile the integers.

Coven and Meyerowitz (1999) generalized the result of Newman to the case \(|S| = p^aq^b \) for two primes \(p, q \).

Example: \(S = \{1, 4, 8, 13\} \) tiles the integers, but \(S = \{1, 4, 8, 15\} \) does not.

Observation: We may assume \(0 \in S \), without loss of generality.
If $\mathbb{Z} = S \oplus D$, the density of D must be $\delta(D) = 1/|S|$, where

$$\delta(D) := \liminf_{n \to \infty} \frac{|D \cap [-n, n]|}{2n + 1}.$$
Tiling the integers with overlaps

- If $\mathbb{Z} = S \oplus D$, the \textit{density} of D must be $\delta(D) = 1/|S|$, where
 \[
 \delta(D) := \liminf_{n \to \infty} \frac{|D \cap [-n, n]|}{2n + 1}.
 \]

- Example: Tiling \mathbb{Z} with translates of $S = \{0, 1, 2\}$ has a density $1/3$.

Tiling the integers with overlaps

- If $\mathbb{Z} = S \oplus D$, the *density* of D must be $\delta(D) = 1/|S|$, where

$$
\delta(D) := \liminf_{n \to \infty} \frac{|D \cap [-n, n]|}{2n + 1}.
$$

- Example: Tiling \mathbb{Z} with translates of $S = \{0, 1, 2\}$ has a density $1/3$.

- If S cannot tile \mathbb{Z}, we can still look for a set $D \subseteq \mathbb{Z}$ with minimum density $\delta(D)$ such that $\mathbb{Z} = \bigcup_{d \in D} (S + d)$.

Jia Huang (UNK)
Integer Tillings and Domination Ratio
June 2019 3 / 9
Tiling the integers with overlaps

- If \(\mathbb{Z} = S \oplus D \), the density of \(D \) must be \(\delta(D) = 1/|S| \), where
 \[
 \delta(D) := \lim \inf_{n \to \infty} \frac{|D \cap [-n, n]|}{2n + 1}.
 \]

- Example: Tiling \(\mathbb{Z} \) with translates of \(S = \{0, 1, 2\} \) has a density 1/3.

- If \(S \) cannot tile \(\mathbb{Z} \), we can still look for a set \(D \subseteq \mathbb{Z} \) with minimum density \(\delta(D) \) such that \(\mathbb{Z} = \bigcup_{d \in D} (S + d) \).

- Such a set \(D \) is actually a minimum dominating set of the integer distance graph \(\Gamma(\mathbb{Z}, S) \), which is a Cayley graph with vertex set \(\mathbb{Z} \) and edge set \(\{(n, n + s) : n \in \mathbb{Z}, s \in S\} \).
Tiling the integers with overlaps

- If $\mathbb{Z} = S \oplus D$, the **density** of D must be $\delta(D) = 1/|S|$, where

 $$\delta(D) := \liminf_{n \to \infty} \frac{|D \cap [-n, n]|}{2n + 1}.$$

- Example: Tiling \mathbb{Z} with translates of $S = \{0, 1, 2\}$ has a density $1/3$.

- If S cannot tile \mathbb{Z}, we can still look for a set $D \subseteq \mathbb{Z}$ with minimum density $\delta(D)$ such that $\mathbb{Z} = \bigcup_{d \in D} (S + d)$.

- Such a set D is actually a minimum dominating set of the **integer distance graph** $\Gamma(\mathbb{Z}, S)$, which is a Cayley graph with vertex set \mathbb{Z} and edge set $\{(n, n + s) : n \in \mathbb{Z}, s \in S\}$.

- The independence ratio of an integer distance graph is closely related to its chromatic number and has been extensively studied.
Say a vertex *dominates* itself and its (out-)neighbors.
Say a vertex *dominates* itself and its (out-)neighbours.

A *dominating set* D of a graph is a set of vertices such that every vertex in the graph is dominated by some element of D.

Efficient dominating sets in a finite Cayley graph have been studied by Chelvam and Mutharasu, Dejter and Serra, and others.
Say a vertex *dominates* itself and its (out-)neighbors.

A *dominating set* D of a graph is a set of vertices such that every vertex in the graph is dominated by some element of D.

Finding minimum dominating sets is an NP-complete problem with many applications (e.g., resource allocation).
Say a vertex dominates itself and its (out-)neighbors.

A dominating set D of a graph is a set of vertices such that every vertex in the graph is dominated by some element of D.

Finding minimum dominating sets is an NP-complete problem with many applications (e.g., resource allocation).

The domination ratio $\bar{\gamma}(\mathbb{Z}, S)$ of the integer distance graph $\Gamma(\mathbb{Z}, S)$ is the infimum of $\delta(D)$ over all dominating sets D of $\Gamma(\mathbb{Z}, S)$.
Domination Ratio of an integer distance graph

- Say a vertex *dominates* itself and its (out-)neighbors.
- A *dominating set* D of a graph is a set of vertices such that every vertex in the graph is dominated by some element of D.
- Finding minimum dominating sets is an NP-complete problem with many applications (e.g., resource allocation).
- The *domination ratio* $\bar{\gamma}(\mathbb{Z}, S)$ of the integer distance graph $\Gamma(\mathbb{Z}, S)$ is the infimum of $\delta(D)$ over all dominating sets D of $\Gamma(\mathbb{Z}, S)$.
- We have $\mathbb{Z} = S \oplus D$ if and only if every vertex in $\Gamma(\mathbb{Z}, S)$ is dominated by exactly one element of D, i.e., D is an *efficient dominating set*.
Say a vertex \textit{dominates} itself and its (out-)neighbors.

A \textit{dominating set} D of a graph is a set of vertices such that every vertex in the graph is dominated by some element of D.

Finding minimum dominating sets is an NP-complete problem with many applications (e.g., resource allocation).

The \textit{domination ratio} $\bar{\gamma}(\mathbb{Z}, S)$ of the integer distance graph $\Gamma(\mathbb{Z}, S)$ is the infimum of $\delta(D)$ over all dominating sets D of $\Gamma(\mathbb{Z}, S)$.

We have $\mathbb{Z} = S \oplus D$ if and only if every vertex in $\Gamma(\mathbb{Z}, S)$ is dominated by exactly one element of D, i.e., D is an \textit{efficient dominating set}.

Efficient dominating sets in a finite Cayley graph has been studied by Chelvam and Mutharasu, Dejter and Serra, and others.
Period sets

Definition

A set $D \subseteq \mathbb{Z}$ is *periodic* if there exists a positive integer p such that

$$D \cap [ip + 1, ip + p] = \{ip + j : j \in D \cap [1, p]\}, \quad \forall i \in \mathbb{Z}.$$

The smallest p (not necessarily prime) is called the *period* of D.

\[\text{Proposition (H. 2019)\hspace{1cm}}\]

Let S be a finite subset of $\mathbb{Z}\{-0\}$. The following results hold.

- The domination ratio of $\Gamma(Z, S)$ is the density $\delta(D) = \frac{|D \cap [1, p]|}{p}$ of some periodic dominating set D with period p.
- By reduction modulo p, we get a minimum dominating set $D \cap [1, p]$ for the circulant graph $\Gamma(Z_p, S_p)$.
- The graph $\Gamma(Z, S)$ has an efficient dominating set if and only if its domination ratio is $\frac{1}{|S| + 1}$.

Jia Huang (UNK)

Integer Tillings and Domination Ratio

June 2019 5 / 9
Period sets

Definition

A set $D \subseteq \mathbb{Z}$ is *periodic* if there exists a positive integer p such that

$$D \cap [ip + 1, ip + p] = \{ip + j : j \in D \cap [1, p]\}, \quad \forall i \in \mathbb{Z}.$$

The smallest p (not necessarily prime) is called the *period* of D.

Proposition (H. 2019)

Let S be a finite subset of $\mathbb{Z} \setminus \{0\}$. The following results hold.

- The domination ratio of $\Gamma(\mathbb{Z}, S)$ is the density $\delta(D) = |D \cap [1, p]| / p$ of some periodic dominating set D with period p.

Period sets

Definition

A set $D \subseteq \mathbb{Z}$ is **periodic** if there exists a positive integer p such that

$$D \cap [ip + 1, ip + p] = \{ip + j : j \in D \cap [1, p]\}, \quad \forall i \in \mathbb{Z}.$$

The smallest p (not necessarily prime) is called the **period** of D.

Proposition (H. 2019)

Let S be a finite subset of $\mathbb{Z} \setminus \{0\}$. The following results hold.

- The domination ratio of $\Gamma(\mathbb{Z}, S)$ is the density $\delta(D) = |D \cap [1, p]|/p$ of some periodic dominating set D with period p.

- By reduction modulo p, we get a minimum dominating set $D \cap [1, p]$ for the circulant graph $\Gamma(\mathbb{Z}_p, S_p)$.
Period sets

Definition
A set $D \subseteq \mathbb{Z}$ is *periodic* if there exists a positive integer p such that

$$D \cap [ip + 1, ip + p] = \{ip + j : j \in D \cap [1, p]\}, \quad \forall i \in \mathbb{Z}.$$

The smallest p (not necessarily prime) is called the *period* of D.

Proposition (H. 2019)
Let S be a finite subset of $\mathbb{Z} \setminus \{0\}$. The following results hold.

- The domination ratio of $\Gamma(\mathbb{Z}, S)$ is the density $\delta(D) = |D \cap [1, p]|/p$ of some periodic dominating set D with period p.
- By reduction modulo p, we get a minimum dominating set $D \cap [1, p]$ for the circulant graph $\Gamma(\mathbb{Z}_p, S_p)$.
- The graph $\Gamma(\mathbb{Z}, S)$ has an efficient dominating set if and only if its domination ratio is $1/(|S| + 1)$.
The case $|S| = 2$

Theorem (H. 2019)

If $k \in \mathbb{Z}$ then $\bar{\gamma}(\mathbb{Z}, \{1, 3k + 2\}) = 1/3$. If k is a positive integer then

$$\bar{\gamma}(\mathbb{Z}, \{1, 3k + 1\}) = \bar{\gamma}(\mathbb{Z}, \{1, -3k\}) = (k + 1)/(3k + 2),$$

$$\bar{\gamma}(\mathbb{Z}, \{1, 3k\}) = \bar{\gamma}(\mathbb{Z}, \{1, -3k + 1\}) = 2k/(6k - 1).$$
The case $|S| = 2$

Theorem (H. 2019)

If $k \in \mathbb{Z}$ then $\bar{\gamma}(\mathbb{Z}, \{1, 3k + 2\}) = 1/3$. If k is a positive integer then

\[
\bar{\gamma}(\mathbb{Z}, \{1, 3k + 1\}) = \bar{\gamma}(\mathbb{Z}, \{1, -3k\}) = (k + 1)/(3k + 2),
\]

\[
\bar{\gamma}(\mathbb{Z}, \{1, 3k\}) = \bar{\gamma}(\mathbb{Z}, \{1, -3k + 1\}) = 2k/(6k - 1).
\]

Corollary (H. 2019)

Let $\gamma(\mathbb{Z}_p, S)$ be the domination number of $\Gamma(\mathbb{Z}_p, S)$. For $k > 0$ we have $\gamma(\mathbb{Z}_{3k+2}, \{\pm 1\}) = \gamma(\mathbb{Z}_{3k+2}, \{1, 2\}) = k + 1$ and $\gamma(\mathbb{Z}_{6k-1}, \{1, 3k\}) = 2k$.
The case $|S| = 2$

Theorem (H. 2019)

If $k \in \mathbb{Z}$ then $\bar{\gamma}(\mathbb{Z}, \{1, 3k + 2\}) = 1/3$. If k is a positive integer then

$$\bar{\gamma}(\mathbb{Z}, \{1, 3k + 1\}) = \bar{\gamma}(\mathbb{Z}, \{1, -3k\}) = (k + 1)/(3k + 2),$$

$$\bar{\gamma}(\mathbb{Z}, \{1, 3k\}) = \bar{\gamma}(\mathbb{Z}, \{1, -3k + 1\}) = 2k/(6k - 1).$$

Corollary (H. 2019)

Let $\gamma(\mathbb{Z}_p, S)$ be the domination number of $\Gamma(\mathbb{Z}_p, S)$. For $k > 0$ we have

$$\gamma(\mathbb{Z}_{3k+2}, \{\pm 1\}) = \gamma(\mathbb{Z}_{3k+2}, \{1, 2\}) = k + 1 \text{ and } \gamma(\mathbb{Z}_{6k-1}, \{1, 3k\}) = 2k.$$

Problem

Determine $\bar{\gamma}(\mathbb{Z}, \{s, t\})$ where $s \nmid t$. (If $s \mid t$ then $\bar{\gamma}(\mathbb{Z}, \{s, t\}) = \bar{\gamma}(1, t/s)$.)
The case $|S| > 2$

Theorem (H. 2019+)

Let d and s be integers with $d \geq 2$ and $s \notin [0, d - 2]$. Write $s = dk + e - 1$ or $s = -dk + d - e - 1$ for some integers $k \geq 1$ and $e \in \{1, \ldots, d - 1\}$. Then $\Gamma(\mathbb{Z}, \{1, 2, \ldots, d - 2, s\})$ has domination ratio

$$\bar{\gamma}(\mathbb{Z}, \{1, 2, \ldots, d - 2, s\}) = \min \left\{ \frac{k + 1}{dk + e}, \frac{2k + e - 1}{2dk - d + 2e}, \frac{1}{d - 1} \right\}$$

$$= \begin{cases}
 \frac{(k + 1)}{(dk + e)} & \text{if } e \geq 2, \ d \leq k + e + 1 \\
 \frac{(2k + e - 1)}{(2dk - d + 2e)} & \text{if } e = 1, \ d \leq 2k + 2 \\
 \frac{1}{(d - 1)} & \text{otherwise.}
\end{cases}$$

This ratio is achieved by a dominating set with block structure $(d^k, e)^\infty$, $(d^{k-1}, d + e, d^{k-1}, 1^e)^\infty$, or $(d - 1)^\infty$.

Jia Huang (UNK)
Integer Tillings and Domination Ratio
June 2019
Some corollaries

Corollary (H. 2019+)

If \(s = 4k \) or \(-4k + 2\) then \(\bar{\gamma}(\mathbb{Z}, \{1, 2, s\}) = 2k/(8k - 2) \).

If \(s = 4k + 1 \) or \(-4k + 1\) (\(k > 0 \)) then \(\bar{\gamma}(\mathbb{Z}, \{1, 2, s\}) = (k + 1)/(4k + 2) \).

If \(s = 4k + 2 \) or \(-4k\) (\(k > 0 \)) then \(\bar{\gamma}(\mathbb{Z}, \{1, 2, s\}) = (k + 1)/(4k + 3) \).
Some corollaries

Corollary (H. 2019+)

If $s = 4k$ or $-4k + 2$ then $\bar{\gamma}(\mathbb{Z}, \{1, 2, s\}) = 2k/(8k - 2)$.

If $s = 4k + 1$ or $-4k + 1$ ($k > 0$) then $\bar{\gamma}(\mathbb{Z}, \{1, 2, s\}) = (k + 1)/(4k + 2)$.

If $s = 4k + 2$ or $-4k$ ($k > 0$) then $\bar{\gamma}(\mathbb{Z}, \{1, 2, s\}) = (k + 1)/(4k + 3)$.

Corollary (H. 2019+)

Let d, s be integers with $d \geq 2$ and $s \notin [0, d - 2]$. Then there exists an efficient dominating set for $\Gamma(\mathbb{Z}, \{1, 2, \ldots, d - 2, s\})$ if and only if $d = 2$ or $s \equiv -1 \pmod{d}$.
Some corollaries

Corollary (H. 2019+)

If $s = 4k$ or $-4k + 2$ then $\bar{\gamma}(\mathbb{Z}, \{1, 2, s\}) = 2k/(8k - 2)$.
If $s = 4k + 1$ or $-4k + 1$ (k > 0) then $\bar{\gamma}(\mathbb{Z}, \{1, 2, s\}) = (k + 1)/(4k + 2)$.
If $s = 4k + 2$ or $-4k$ (k > 0) then $\bar{\gamma}(\mathbb{Z}, \{1, 2, s\}) = (k + 1)/(4k + 3)$.

Corollary (H. 2019+)

Let d, s be integers with $d \geq 2$ and $s \notin [0, d - 2]$. Then there exists an efficient dominating set for $\Gamma(\mathbb{Z}, \{1, 2, \ldots, d - 2, s\})$ if and only if $d = 2$ or $s \equiv -1 \pmod{d}$.

Corollary (H. 2019+)

Let $d \geq 2$, $k \geq 1$, and $e \geq 2$ be integers. If $d \leq k + e + 1$ then $\gamma(\mathbb{Z}_{dk+e}, \{-1, 1, 2, \ldots, d - 2\}) = \gamma(\mathbb{Z}_{dk+e}, \{1, 2, \ldots, d - 1\}) = k + 1$.
If $d \leq 2k + 2$ then $\gamma(\mathbb{Z}_{2dk-d+2}, \{1, 2, \ldots, d - 2, dk\}) = 2k$.
Thank you!