0-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra

Jia Huang

University of Minnesota ↓ University of Nebraska at Kearney

Jun 29, 2014

/⊒ ▶ < ∃ ▶ <

- The symmetric group and the 0-Hecke algebra.
- Actions on polynomials.
- Actions on Stanley-Reisner rings.
- Noncommutative Hall-Littlewood symmetric functions.
- Multivariate generating function of permutation statistics.

<ロ> <同> <同> < 同> < 同>

The Symmetric Groups and 0-Hecke algebra

The symmetric group 𝔅_n is generated by the adjacent transpositions s_i = (i, i + 1), 1 ≤ i ≤ n − 1, with relations

$$\begin{cases} s_i^2 = 1, & 1 \le i \le n-1, \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, & 1 \le i \le n-2, \\ s_i s_j = s_j s_i, & |i-j| > 1. \end{cases}$$

The Symmetric Groups and 0-Hecke algebra

The symmetric group 𝔅_n is generated by the adjacent transpositions s_i = (i, i + 1), 1 ≤ i ≤ n − 1, with relations

$$\begin{cases} s_i^2 = 1, & 1 \le i \le n-1, \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, & 1 \le i \le n-2, \\ s_i s_j = s_j s_i, & |i-j| > 1. \end{cases}$$

The 0-Hecke algebra H_n(0) is generated by the bubble-sorting operators π₁,..., π_{n-1} with relations

$$\left\{ \begin{array}{ll} \pi_i^2 = \pi_i, & 1 \leq i \leq n-1, \\ \pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1}, & 1 \leq i \leq n-2, \\ \pi_i \pi_j = \pi_j \pi_i, & |i-j| > 1. \end{array} \right.$$

• (Complex) representations of \mathfrak{S}_n are semisimple: they are direct sums of simple modules.

- (Complex) representations of \mathfrak{S}_n are semisimple: they are direct sums of simple modules.
- Simple modules S_{λ} are labeled by partitions $\lambda \vdash n$.

イロン 不同 とくほう イロン

- (Complex) representations of \mathfrak{S}_n are semisimple: they are direct sums of simple modules.
- Simple modules S_{λ} are labeled by partitions $\lambda \vdash n$.
- Frobenius characteristic of S_{λ} is the Schur functions s_{λ} .

イロン 不同 とくほう イロン

- (Complex) representations of \mathfrak{S}_n are semisimple: they are direct sums of simple modules.
- Simple modules S_{λ} are labeled by partitions $\lambda \vdash n$.
- Frobenius characteristic of S_{λ} is the Schur functions s_{λ} .

	Representations of \mathfrak{S}_n	\leftrightarrow	symmetric functions,
۹	direct sum	\leftrightarrow	sum,
	induction product	\leftrightarrow	product.

- 4 同 6 4 日 6 4 日 6

 A composition of n, denoted by α ⊨ n, is a sequence α = (α₁,..., α_ℓ) of positive integers such that α₁ + ··· + α_ℓ = n.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A composition of n, denoted by α ⊨ n, is

 a sequence α = (α₁,..., α_ℓ) of positive integers
 such that α₁ + ··· + α_ℓ = n.
- Descent set $D(\alpha) := \{\alpha_1, \alpha_1 + \alpha_2, \dots, \alpha_1 + \dots + \alpha_{\ell-1}\}.$

A composition of n, denoted by α ⊨ n, is

 a sequence α = (α₁,..., α_ℓ) of positive integers
 such that α₁ + ··· + α_ℓ = n.

• Descent set
$$D(\alpha) := \{\alpha_1, \alpha_1 + \alpha_2, \dots, \alpha_1 + \dots + \alpha_{\ell-1}\}.$$

• A bijection: $\alpha \models n \leftrightarrow D(\alpha) \subseteq [n-1] := \{1, \dots, n-1\}.$

A composition of n, denoted by α ⊨ n, is

 a sequence α = (α₁,..., α_ℓ) of positive integers
 such that α₁ + ··· + α_ℓ = n.

• Descent set
$$D(\alpha) := \{\alpha_1, \alpha_1 + \alpha_2, \dots, \alpha_1 + \dots + \alpha_{\ell-1}\}.$$

- A bijection: $\alpha \models n \leftrightarrow D(\alpha) \subseteq [n-1] := \{1, \dots, n-1\}.$
- Another bijection: compositions \leftrightarrow ribbon diagrams.

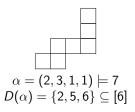
イロト 不得 とくほ とくほ とうほう

A composition of n, denoted by α ⊨ n, is

 a sequence α = (α₁,..., α_ℓ) of positive integers
 such that α₁ + ··· + α_ℓ = n.

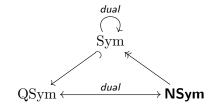
• Descent set
$$D(\alpha) := \{\alpha_1, \alpha_1 + \alpha_2, \dots, \alpha_1 + \dots + \alpha_{\ell-1}\}.$$

- A bijection: $\alpha \models n \leftrightarrow D(\alpha) \subseteq [n-1] := \{1, \dots, n-1\}.$
- Another bijection: compositions \leftrightarrow ribbon diagrams.



-

۲

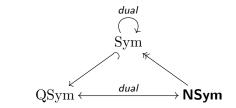


(日)

э

э

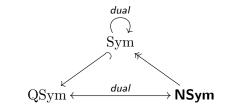
٠



• Sym is a self-dual Hopf algebra with a self-dual basis $s_{\lambda} \xleftarrow{\text{dual}} s_{\lambda}$, and dual bases $m_{\lambda} \xleftarrow{\text{dual}} h_{\lambda}$.

▲ 同 ▶ ▲ 国 ▶

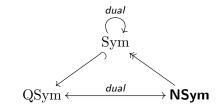
٠



- Sym is a self-dual Hopf algebra with a self-dual basis $s_{\lambda} \xleftarrow{\text{dual}} s_{\lambda}$, and dual bases $m_{\lambda} \xleftarrow{\text{dual}} h_{\lambda}$.
- QSym (quasisymmetric functions) has bases M_{α} and F_{α} .

・ 一 ・ ・ ・ ・ ・ ・

٠



- Sym is a self-dual Hopf algebra with a self-dual basis $s_{\lambda} \xleftarrow{\text{dual}} s_{\lambda}$, and dual bases $m_{\lambda} \xleftarrow{\text{dual}} h_{\lambda}$.
- QSym (quasisymmetric functions) has bases M_{α} and F_{α} .
- NSym (noncommutative symmetric functions): \mathbf{h}_{α} and \mathbf{s}_{α} .

- 4 同 🕨 - 4 目 🕨 - 4 目

•
$$H_n(0) = \bigoplus_{\alpha \models n} \mathbf{P}_{\alpha}$$
.

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶

э

•
$$H_n(0) = \bigoplus_{\alpha \models n} \mathbf{P}_{\alpha}$$
. $H_3(0) = \mathbf{P}_3 \oplus \mathbf{P}_{12} \oplus \mathbf{P}_{21} \oplus \mathbf{P}_{111}$

- * @ * * 注 * * 注 *

э

- $H_n(0) = \bigoplus_{\alpha \models n} \mathbf{P}_{\alpha}$. $H_3(0) = \mathbf{P}_3 \oplus \mathbf{P}_{12} \oplus \mathbf{P}_{21} \oplus \mathbf{P}_{111}$.
- Projective indecomposable $H_n(0)$ -modules: \mathbf{P}_{α} , $\alpha \models n$.

- $H_n(0) = \bigoplus_{\alpha \models n} \mathbf{P}_{\alpha}$. $H_3(0) = \mathbf{P}_3 \oplus \mathbf{P}_{12} \oplus \mathbf{P}_{21} \oplus \mathbf{P}_{111}$.
- Projective indecomposable $H_n(0)$ -modules: \mathbf{P}_{α} , $\alpha \models n$.
- Simple $H_n(0)$ -modules: $\mathbf{C}_{\alpha} = \mathbf{P}_{\alpha}/\mathrm{rad}(\mathbf{P}_{\alpha}), \ \alpha \models n.$

- $H_n(0) = \bigoplus_{\alpha \models n} \mathbf{P}_{\alpha}$. $H_3(0) = \mathbf{P}_3 \oplus \mathbf{P}_{12} \oplus \mathbf{P}_{21} \oplus \mathbf{P}_{111}$.
- Projective indecomposable $H_n(0)$ -modules: \mathbf{P}_{α} , $\alpha \models n$.
- Simple $H_n(0)$ -modules: $\mathbf{C}_{\alpha} = \mathbf{P}_{\alpha}/\mathrm{rad}(\mathbf{P}_{\alpha}), \ \alpha \models n.$

Theorem (Krob-Thibon 1997)

• Noncommutative characteristic: $ch(P_{\alpha}) = s_{\alpha}$ in NSym.

- $H_n(0) = \bigoplus_{\alpha \models n} \mathbf{P}_{\alpha}$. $H_3(0) = \mathbf{P}_3 \oplus \mathbf{P}_{12} \oplus \mathbf{P}_{21} \oplus \mathbf{P}_{111}$.
- Projective indecomposable $H_n(0)$ -modules: \mathbf{P}_{α} , $\alpha \models n$.
- Simple $H_n(0)$ -modules: $\mathbf{C}_{\alpha} = \mathbf{P}_{\alpha}/\mathrm{rad}(\mathbf{P}_{\alpha}), \ \alpha \models n.$

Theorem (Krob-Thibon 1997)

- Noncommutative characteristic: $ch(P_{\alpha}) = s_{\alpha}$ in NSym.
- Quasisymmetric characteristic: $Ch(\mathbf{C}_{\alpha}) = F_{\alpha}$ in QSym.

• \mathfrak{S}_n acts on $\mathbb{C}[X] = \mathbb{C}[x_1, \dots, x_n]$ by permuting x_1, \dots, x_n .

- \mathfrak{S}_n acts on $\mathbb{C}[X] = \mathbb{C}[x_1, \dots, x_n]$ by permuting x_1, \dots, x_n .
- For any $\mu \vdash n$, $\mathbb{C}[X]$ has a homogeneous \mathfrak{S}_n -stable ideal J_{μ} .

- \mathfrak{S}_n acts on $\mathbb{C}[X] = \mathbb{C}[x_1, \dots, x_n]$ by permuting x_1, \dots, x_n .
- For any $\mu \vdash n$, $\mathbb{C}[X]$ has a homogeneous \mathfrak{S}_n -stable ideal J_{μ} .
- $R_{\mu} = \mathbb{C}[X]/J_{\mu}$ is isomorphic to the cohomology ring of the *Springer fiber* (DeConcini-Procesi).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- \mathfrak{S}_n acts on $\mathbb{C}[X] = \mathbb{C}[x_1, \dots, x_n]$ by permuting x_1, \dots, x_n .
- For any $\mu \vdash n$, $\mathbb{C}[X]$ has a homogeneous \mathfrak{S}_n -stable ideal J_{μ} .
- $R_{\mu} = \mathbb{C}[X]/J_{\mu}$ is isomorphic to the cohomology ring of the *Springer fiber* (DeConcini-Procesi).

•
$$\mu = 1^n$$
: $J_{\mu} = (e_1, \dots, e_n)$ and $R_{\mu} = \mathbb{C}[X]/(e_1, \dots, e_n)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- \mathfrak{S}_n acts on $\mathbb{C}[X] = \mathbb{C}[x_1, \dots, x_n]$ by permuting x_1, \dots, x_n .
- For any $\mu \vdash n$, $\mathbb{C}[X]$ has a homogeneous \mathfrak{S}_n -stable ideal J_{μ} .
- $R_{\mu} = \mathbb{C}[X]/J_{\mu}$ is isomorphic to the cohomology ring of the *Springer fiber* (DeConcini-Procesi).

•
$$\mu = 1^n$$
: $J_{\mu} = (e_1, \dots, e_n)$ and $R_{\mu} = \mathbb{C}[X]/(e_1, \dots, e_n)$.

• Tanisaki: $J_{(2,2)}$ is generated by e_1, e_2, e_3, e_4 , and

$$e_2(x_1, x_2, x_3), e_2(x_1, x_2, x_4), e_2(x_1, x_3, x_4), e_2(x_2, x_3, x_4), e_3(x_1, x_2, x_3), e_3(x_1, x_2, x_4), e_3(x_1, x_3, x_4), e_3(x_2, x_3, x_4).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Theorem (Hotta-Springer, Garsia-Procesi)

The graded Frobenius characteristic of $R_{\mu} = \mathbb{C}[X]/J_{\mu}$ is the modified Hall-Littlewood symmetric function

$$\widetilde{H}_{\mu}(x;t) = \sum_{\lambda} t^{n(\mu)} \mathcal{K}_{\lambda\mu}(t^{-1}) s_{\lambda}$$

where $n(\mu) = \mu_2 + 2\mu_3 + 3\mu_4 + \cdots$ and $K_{\lambda\mu}(t)$ is the Kostka-Foulkes polynomial.

Theorem (Hotta-Springer, Garsia-Procesi)

The graded Frobenius characteristic of $R_{\mu} = \mathbb{C}[X]/J_{\mu}$ is the modified Hall-Littlewood symmetric function

$$\widetilde{H}_{\mu}(x;t) = \sum_{\lambda} t^{n(\mu)} \mathcal{K}_{\lambda\mu}(t^{-1}) s_{\lambda}$$

where $n(\mu) = \mu_2 + 2\mu_3 + 3\mu_4 + \cdots$ and $K_{\lambda\mu}(t)$ is the Kostka-Foulkes polynomial.

Corollary (Chevalley 1955)

The coinvariant algebra $\mathbb{C}[X]/(e_1, \ldots, e_n)$ is isomorphic to the left regular representation of \mathfrak{S}_n .

<ロ> <同> <同> < 同> < 同>

$H_n(0)$ -action on polynomials

Definition

 $H_n(0)$ acts on $\mathbb{C}[X]$ via the Demazure operators

$$\pi_i(f) = rac{x_i f - x_{i+1} s_i f}{x_i - x_{i+1}}, \quad orall f \in \mathbb{C}[X].$$

<ロ> <同> <同> < 同> < 同>

э

$H_n(0)$ -action on polynomials

Definition

 $H_n(0)$ acts on $\mathbb{C}[X]$ via the Demazure operators

$$\pi_i(f) = rac{x_i f - x_{i+1} s_i f}{x_i - x_{i+1}}, \quad orall f \in \mathbb{C}[X].$$

Example

$$\begin{cases} \pi_1(x_1^3 x_2 x_3 x_4^4) = (x_1^3 x_2 + x_1^2 x_2^2 + x_1 x_2^3) x_3 x_4^4, \\ \pi_2(x_1^3 x_2 x_3 x_4^4) = x_1^3 x_2 x_3 x_4^4, \\ \pi_3(x_1^3 x_2 x_3 x_4^4) = x_1^3 x_2(-x_3^2 x_4^3 - x_3^3 x_4^2). \end{cases}$$

・ロト ・同ト ・モト ・モト

$H_n(0)$ -action on polynomials

Definition

 $H_n(0)$ acts on $\mathbb{C}[X]$ via the Demazure operators

$$\pi_i(f) = rac{x_i f - x_{i+1} s_i f}{x_i - x_{i+1}}, \quad orall f \in \mathbb{C}[X].$$

Example

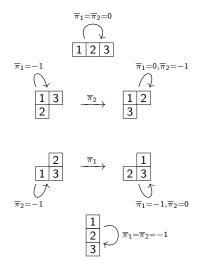
$$\begin{cases} \pi_1(x_1^3 x_2 x_3 x_4^4) = (x_1^3 x_2 + x_1^2 x_2^2 + x_1 x_2^3) x_3 x_4^4 \\ \pi_2(x_1^3 x_2 x_3 x_4^4) = x_1^3 x_2 x_3 x_4^4, \\ \pi_3(x_1^3 x_2 x_3 x_4^4) = x_1^3 x_2(-x_3^2 x_4^3 - x_3^3 x_4^2). \end{cases}$$

Theorem (H. 2011)

The coinvariant algebra $\mathbb{C}[X]/(e_1, \ldots, e_n)$ is isomorphic to the left regular representation of $H_n(0)$.

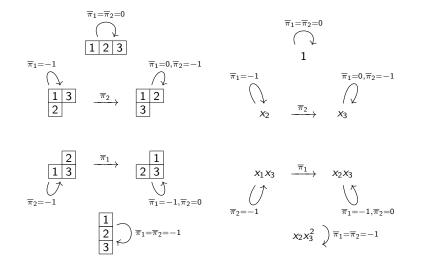
イロト 不得 とくほと くほう

$H_3(0)$ and $\mathbb{C}[x_1, x_2, x_3]/(e_1, e_2, e_3)$



・ロン ・部 と ・ ヨ と ・ ヨ と …

$H_3(0)$ and $\mathbb{C}[x_1, x_2, x_3]/(e_1, e_2, e_3)$

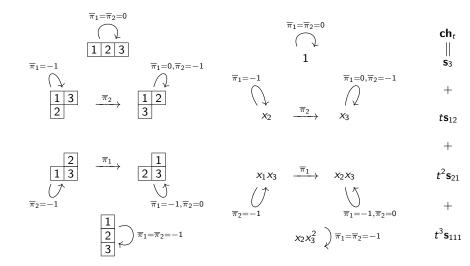


0-Hecke action on Stanley-Reisner ring of Boolean algebra

イロト 不得 トイヨト イヨト 二日

Jia Huang

$H_3(0)$ and $\mathbb{C}[x_1, x_2, x_3]/(e_1, e_2, e_3)$



Jia Huang

0-Hecke action on Stanley-Reisner ring of Boolean algebra

・ロト ・回ト ・ヨト ・ヨト

Theorem (Hotta-Springer, Garsia-Procesi)

The graded Frobenius characteristic of $R_{\mu} = \mathbb{C}[X]/J_{\mu}$ is the modified Hall-Littlewood symmetric function

$$\widetilde{H}_{\mu}(x;t) = \sum_{\lambda} t^{n(\mu)} \mathcal{K}_{\lambda\mu}(t^{-1}) s_{\lambda}$$

where $n(\mu) = \mu_2 + 2\mu_3 + 3\mu_4 + \cdots$ and $K_{\lambda\mu}(t)$ is the Kostka-Foulkes polynomial.

Corollary (Chevalley 1955)

The coinvariant algebra $\mathbb{C}[X]/(e_1, \ldots, e_n)$ is isomorphic to the left regular representation of \mathfrak{S}_n .

<ロ> <同> <同> < 同> < 同>

$$\widetilde{\mathsf{H}}_{lpha}(\mathsf{x};t) := \sum_{eta ext{ refined by } lpha} t^{\operatorname{maj}(eta)} \mathsf{s}_{eta} \quad ext{inside} \quad \mathsf{NSym}[t]$$

and also a (q, t)-analogue $\widetilde{H}_{\alpha}(\mathbf{x}; q, t)$.

イロト 不得 トイヨト イヨト 二日

$$\widetilde{\mathsf{H}}_{lpha}(\mathsf{x};t) := \sum_{eta ext{ refined by } lpha} t^{\operatorname{maj}(eta)} \mathsf{s}_{eta} ext{ inside } \mathsf{NSym}[t]$$

and also a (q, t)-analogue $\widetilde{H}_{\alpha}(\mathbf{x}; q, t)$.

• Representation theoretic interpretation?

イロン 不同 とくほう イロン

$$\widetilde{\mathsf{H}}_{lpha}(\mathsf{x};t) := \sum_{eta ext{ refined by } lpha} t^{ ext{maj}(eta)} \mathsf{s}_{eta} ext{ inside } \mathsf{NSym}[t]$$

and also a (q, t)-analogue $\widetilde{H}_{\alpha}(x; q, t)$.

- Representation theoretic interpretation?
- If α is a hook then R_{μ} still works.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$\widetilde{\mathsf{H}}_{lpha}(\mathsf{x};t) := \sum_{eta ext{ refined by } lpha} t^{ ext{maj}(eta)} \mathsf{s}_{eta} ext{ inside } \mathsf{NSym}[t]$$

and also a (q, t)-analogue $\widetilde{H}_{\alpha}(x; q, t)$.

- Representation theoretic interpretation?
- If α is a hook then R_{μ} still works.
- If α is not a hook then I need the Stanley-Reisner ring $\mathbb{C}[\mathcal{B}_n]$.

イロン 不同 とくほう イロン

 $H_n(0)$ -action on $R_\mu = \mathbb{C}[X]/J_\mu$

The ideal J_μ is H_n(0)-stable if and only if μ = (1^k, n - k) is a hook. Assume μ is a hook below.

▲□ ► ▲ □ ► ▲

- The ideal J_μ is H_n(0)-stable if and only if μ = (1^k, n k) is a hook. Assume μ is a hook below.
- Then $R_{\mu} = \mathbb{C}[X]/J_{\mu}$ becomes a projective $H_n(0)$ -module.

- 4 同 ト 4 ヨ ト 4 ヨ

- The ideal J_μ is H_n(0)-stable if and only if μ = (1^k, n k) is a hook. Assume μ is a hook below.
- Then $R_{\mu} = \mathbb{C}[X]/J_{\mu}$ becomes a projective $H_n(0)$ -module.
- Its graded noncommutative characteristic is

$$\mathsf{ch}_t(\mathbb{C}[X]/J_\mu) = \sum_lpha ext{ refined by } \mu t^{\mathrm{maj}(lpha)} \mathsf{s}_lpha = \widetilde{\mathsf{H}}_\mu(x;t).$$

- 4 同 2 4 日 2 4 日

- The ideal J_μ is H_n(0)-stable if and only if μ = (1^k, n k) is a hook. Assume μ is a hook below.
- Then $R_{\mu} = \mathbb{C}[X]/J_{\mu}$ becomes a projective $H_n(0)$ -module.
- Its graded noncommutative characteristic is

$$\mathsf{ch}_t(\mathbb{C}[X]/J_\mu) = \sum_{lpha ext{ refined by } \mu} t^{\mathrm{maj}(lpha)} \mathsf{s}_lpha = \widetilde{\mathsf{H}}_\mu(x;t).$$

• Its graded quasisymmetric characteristic is

$$\mathrm{Ch}_t(\mathbb{C}[X]/J_\mu) = \sum_{lpha ext{ refined by } \mu} t^{\mathrm{maj}(lpha)} s_lpha = \widetilde{H}_\mu(x;t).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Boolean algebra

The Boolean algebra B_n is the ranked poset of all subsets of
 [n] := {1, 2, ..., n} ordered by inclusion.

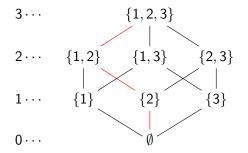
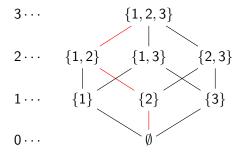


Image: A = A

Boolean algebra

The Boolean algebra B_n is the ranked poset of all subsets of
 [n] := {1, 2, ..., n} ordered by inclusion.

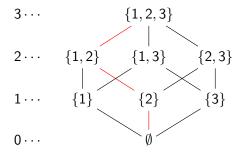


• A multichain $2|1||3| = (\{2\} \subseteq \{1,2\} \subseteq \{1,2\} \subseteq \{1,2,3\}).$

・ 通 ・ ・ ヨ ・ ・

Boolean algebra

The Boolean algebra B_n is the ranked poset of all subsets of
 [n] := {1, 2, ..., n} ordered by inclusion.



- A multichain $2|1||3| = (\{2\} \subseteq \{1,2\} \subseteq \{1,2\} \subseteq \{1,2,3\}).$
- It has rank multiset {1, 2, 2, 3}.

 The Stanley-Reisner ring C[B_n] of B_n is the quotient of the polynomial algebra C [y_A : A ⊆ [n]] by the ideal

 $(y_A y_B : A \text{ and } B \text{ are incomparable in } \mathcal{B}_n)$.

• This is the same as the Stanley-Reisner ring of the Coxeter complex of type A.

イロト 不得 トイヨト イヨト 二日

 The Stanley-Reisner ring C[B_n] of B_n is the quotient of the polynomial algebra C [y_A : A ⊆ [n]] by the ideal

 $(y_A y_B : A \text{ and } B \text{ are incomparable in } \mathcal{B}_n)$.

• This is the same as the Stanley-Reisner ring of the Coxeter complex of type A.

イロト 不得 トイヨト イヨト 二日

 The Stanley-Reisner ring C[B_n] of B_n is the quotient of the polynomial algebra C [y_A : A ⊆ [n]] by the ideal

 $(y_A y_B : A \text{ and } B \text{ are incomparable in } \mathcal{B}_n)$.

- This is the same as the Stanley-Reisner ring of the Coxeter complex of type A.
- $y_{A_1} \cdots y_{A_k} \neq 0 \Leftrightarrow A_1, \dots, A_k$ form a multichain in \mathcal{B}_n .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

• Basis: $\{y_M := y_{A_1} \cdots y_{A_k} : M = (A_1 \subseteq \cdots \subseteq A_k)\}.$

- Basis: $\{y_M := y_{A_1} \cdots y_{A_k} : M = (A_1 \subseteq \cdots \subseteq A_k)\}.$
- A multigrading of $\mathbb{C}[\mathcal{B}_n]$ by rank multiset r(M).

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- Basis: $\{y_M := y_{A_1} \cdots y_{A_k} : M = (A_1 \subseteq \cdots \subseteq A_k)\}.$
- A multigrading of $\mathbb{C}[\mathcal{B}_n]$ by rank multiset r(M).
- e.g. $y_{2|1||3|} = y_2 y_{12}^2 y_{123}$ has multigrading $\underline{t}^{1223} := t_1 t_2^2 t_3$.

- Basis: $\{y_M := y_{A_1} \cdots y_{A_k} : M = (A_1 \subseteq \cdots \subseteq A_k)\}.$
- A multigrading of $\mathbb{C}[\mathcal{B}_n]$ by rank multiset r(M).
- e.g. $y_{2|1||3|} = y_2 y_{12}^2 y_{123}$ has multigrading $\underline{t}^{1223} := t_1 t_2^2 t_3$.
- Transfer map $\tau(y_{2|1||3|}) = x_2(x_1x_2)^2 x_1x_2x_3 = x_1^3 x_2^4 x_3.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

- Basis: $\{y_M := y_{A_1} \cdots y_{A_k} : M = (A_1 \subseteq \cdots \subseteq A_k)\}.$
- A multigrading of $\mathbb{C}[\mathcal{B}_n]$ by rank multiset r(M).
- e.g. $y_{2|1||3|} = y_2 y_{12}^2 y_{123}$ has multigrading $\underline{t}^{1223} := t_1 t_2^2 t_3$.
- Transfer map $\tau(y_{2|1||3|}) = x_2(x_1x_2)^2x_1x_2x_3 = x_1^3x_2^4x_3.$
- The transfer map induces a vector space isomorphism

$$\tau: \mathbb{C}[\mathcal{B}_n]/(y_{\emptyset}) \cong \mathbb{C}[X]$$

(NOT a ring homomorphism: e.g. $y_1y_2 = 0$ but $x_1x_2 \neq 0$).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

• \mathfrak{S}_n acts on $\mathbb{C}[\mathcal{B}_n]$ by permuting $[n]: s_1(y_{1|34||2|}) = y_{2|34||1|}$.

- \mathfrak{S}_n acts on $\mathbb{C}[\mathcal{B}_n]$ by permuting $[n]: s_1(y_{1|34||2|}) = y_{2|34||1|}$.
- The rank polynomials $\theta_0, \theta_1, \ldots, \theta_n$ are fixed by \mathfrak{S}_n .

- \mathfrak{S}_n acts on $\mathbb{C}[\mathcal{B}_n]$ by permuting $[n]: s_1(y_{1|34||2|}) = y_{2|34||1|}$.
- The rank polynomials $\theta_0, \theta_1, \ldots, \theta_n$ are fixed by \mathfrak{S}_n .
- If n = 3, then $\theta_0 = 1$ and

$$\begin{cases} \theta_1 = y_1 + y_2 + y_3 \\ \theta_2 = y_{12} + y_{13} + y_{23} \\ \theta_3 = y_{123} \end{cases} \xrightarrow{\tau} \begin{cases} e_1 = x_1 + x_2 + x_3 \\ e_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 \\ e_3 = x_1 x_2 x_3 \end{cases}$$

- \mathfrak{S}_n acts on $\mathbb{C}[\mathcal{B}_n]$ by permuting $[n]: s_1(y_{1|34||2|}) = y_{2|34||1|}$.
- The rank polynomials $\theta_0, \theta_1, \ldots, \theta_n$ are fixed by \mathfrak{S}_n .
- If n = 3, then $\theta_0 = 1$ and

$$\begin{cases} \theta_1 = y_1 + y_2 + y_3 \\ \theta_2 = y_{12} + y_{13} + y_{23} \\ \theta_3 = y_{123} \end{cases} \xrightarrow{\tau} \begin{cases} e_1 = x_1 + x_2 + x_3 \\ e_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 \\ e_3 = x_1 x_2 x_3 \end{cases}$$

- \mathfrak{S}_n acts on $\mathbb{C}[\mathcal{B}_n]$ by permuting $[n]: s_1(y_{1|34||2|}) = y_{2|34||1|}$.
- The rank polynomials $\theta_0, \theta_1, \ldots, \theta_n$ are fixed by \mathfrak{S}_n .
- If n = 3, then $\theta_0 = 1$ and

$$\begin{cases} \theta_1 = y_1 + y_2 + y_3 \\ \theta_2 = y_{12} + y_{13} + y_{23} \\ \theta_3 = y_{123} \end{cases} \xrightarrow{\tau} \begin{cases} e_1 = x_1 + x_2 + x_3 \\ e_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 \\ e_3 = x_1 x_2 x_3 \end{cases}$$

- \mathfrak{S}_n acts on $\mathbb{C}[\mathcal{B}_n]$ by permuting $[n]: s_1(y_{1|34||2|}) = y_{2|34||1|}$.
- The rank polynomials $\theta_0, \theta_1, \ldots, \theta_n$ are fixed by \mathfrak{S}_n .
- If n = 3, then $\theta_0 = 1$ and

$$\begin{cases} \theta_1 = y_1 + y_2 + y_3 \\ \theta_2 = y_{12} + y_{13} + y_{23} \\ \theta_3 = y_{123} \end{cases} \xrightarrow{\tau} \begin{cases} e_1 = x_1 + x_2 + x_3 \\ e_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 \\ e_3 = x_1 x_2 x_3 \end{cases}$$

• Invariant algebra $\mathbb{C}[\mathcal{B}_n]^{\mathfrak{S}_n} = \mathbb{C}[\Theta]$, where $\Theta = \{\theta_0, \dots, \theta_n\}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

• We define an action of $H_n(0)$ on the Stanley-Reisner ring $\mathbb{C}[\mathcal{B}_n]$.

・ロト ・四ト ・モト ・モト

• We define an action of $H_n(0)$ on the Stanley-Reisner ring $\mathbb{C}[\mathcal{B}_n]$.

• Example:
$$\begin{cases} \overline{\pi}_1(y_{1|34||2|}) = y_{2|34||1|}, \\ \overline{\pi}_2(y_{1|34||2|}) = -y_{1|34||2|}, \\ \overline{\pi}_3(y_{1|34||2|}) = 0. \end{cases}$$

・ロト ・四ト ・モト ・モト

Theorem (H.)

• $\mathbb{C}[\mathcal{B}_n]$ has a homogeneous $H_n(0)$ -stable ideal I_{α} , $\forall \alpha \models n$.

・ロト ・回ト ・ヨト ・ヨト

Theorem (H.)

- $\mathbb{C}[\mathcal{B}_n]$ has a homogeneous $H_n(0)$ -stable ideal I_{α} , $\forall \alpha \models n$.
- $\mathbb{C}[\mathcal{B}_n]/I_{\alpha}$ becomes a projective multigraded $H_n(0)$ -module.

・ロト ・回ト ・ヨト ・ヨト

Theorem (H.)

- $\mathbb{C}[\mathcal{B}_n]$ has a homogeneous $H_n(0)$ -stable ideal I_{α} , $\forall \alpha \models n$.
- $\mathbb{C}[\mathcal{B}_n]/I_{\alpha}$ becomes a projective multigraded $H_n(0)$ -module.
- Its multigraded noncommutative characteristic is

$$\widetilde{\mathsf{H}}_{lpha}(\mathsf{x}; t_1, \dots, t_{n-1}) := \sum_{eta ext{ refined by } lpha} \underline{t}^{D(eta)} \mathsf{s}_{eta}$$

inside **NSym**[t_1, \ldots, t_{n-1}], where $\underline{t}^S := \prod_{i \in S} t_i$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Interpretation of noncommutative H-L functions

Corollary (H.)

For any composition α of n one has

$$\widetilde{\mathsf{H}}_lpha(\mathsf{x};t)=\widetilde{\mathsf{H}}_lpha(\mathsf{x};t,t^2,\ldots,t^{n-1}).$$

- 4 回 > - 4 回 > - 4 回 >

Corollary (H.)

For any composition α of n one has

$$\widetilde{\mathsf{H}}_{lpha}(\mathsf{x};t) = \widetilde{\mathsf{H}}_{lpha}(\mathsf{x};t,t^2,\ldots,t^{n-1}).$$

Corollary (H.)

For any composition α of n the (q, t)-analogue $\widetilde{H}_{\alpha}(\mathbf{x}; q, t)$ is a specialization of $\widetilde{H}_{1^n}(\mathbf{x}; t_1, \ldots, t_{n-1})$:

$$t_i = \begin{cases} t^i, & i \in D(\alpha), \\ q^{n-i}, & i \in D(\alpha^c). \end{cases}$$

Jia Huang 0-Hecke action on Stanley-Reisner ring of Boolean algebra

(4 同) (4 日) (4 日)

• Let $\alpha \models n$. Define I_{α} to be the ideal of $\mathbb{C}[\mathcal{B}_n]$ generated by $\{\theta_i : i \in D(\alpha)\} \cup \{y_A : |A| \notin D(\alpha)\}.$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

- Let $\alpha \models n$. Define I_{α} to be the ideal of $\mathbb{C}[\mathcal{B}_n]$ generated by $\{\theta_i : i \in D(\alpha)\} \cup \{y_A : |A| \notin D(\alpha)\}.$
- I_{112} is generated by θ_1 , θ_2 , and $\{y_5 : |S| = \{0, 3, 4\}\}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

- Let $\alpha \models n$. Define I_{α} to be the ideal of $\mathbb{C}[\mathcal{B}_n]$ generated by $\{\theta_i : i \in D(\alpha)\} \cup \{\gamma_A : |A| \notin D(\alpha)\}.$
- I_{112} is generated by θ_1 , θ_2 , and $\{y_S : |S| = \{0, 3, 4\}\}$.
- J_{112} is generated by e_1 , e_2 , and $\{x_i x_j x_k : |\{i, j, k\}| = 3\}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

• Let $\alpha \models n$. Define I_{α} to be the ideal of $\mathbb{C}[\mathcal{B}_n]$ generated by

 $\{\theta_i: i \in D(\alpha)\} \cup \{y_A: |A| \notin D(\alpha)\}.$

- I_{112} is generated by θ_1 , θ_2 , and $\{y_S : |S| = \{0, 3, 4\}\}$.
- J_{112} is generated by e_1 , e_2 , and $\{x_i x_j x_k : |\{i, j, k\}| = 3\}$.
- I_{22} is generated by θ_2 and $\{y_5 : |S| \in \{0, 1, 3, 4\}\}$.

• Let $\alpha \models n$. Define I_{α} to be the ideal of $\mathbb{C}[\mathcal{B}_n]$ generated by

 $\{\theta_i: i \in D(\alpha)\} \cup \{y_A: |A| \notin D(\alpha)\}.$

- I_{112} is generated by θ_1 , θ_2 , and $\{y_5 : |S| = \{0, 3, 4\}\}$.
- J_{112} is generated by e_1 , e_2 , and $\{x_i x_j x_k : |\{i, j, k\}| = 3\}$.
- I_{22} is generated by θ_2 and $\{y_S : |S| \in \{0, 1, 3, 4\}\}$.
- J_{22} is generated by $\{e_1, e_2, e_3, e_4\}$ and $\{e_2(S), e_3(S) : |S| = 3\}$

Theorem (H.)

$$\begin{aligned} \operatorname{Ch}_{q,\underline{t}}(\mathbb{C}[\mathcal{B}_n]) &= \sum_{\alpha \models_0 n} \underline{t}^{D(\alpha)} \sum_{w \in \mathfrak{S}^{\alpha}} q^{\operatorname{inv}(w)} F_{D(w^{-1})} \\ &= \sum_{w \in \mathfrak{S}_n} \frac{q^{\operatorname{inv}(w)} \underline{t}^{D(w)} F_{D(w^{-1})}}{\prod_{0 \le i \le n} (1 - t_i)} \\ &= \sum_{k \ge 0} \sum_{\mathbf{p} \in [k+1]^n} t_{p'_1} \cdots t_{p'_k} q^{\operatorname{inv}(\mathbf{p})} F_{D(\mathbf{p})}. \end{aligned}$$

Jia Huang 0-Hecke action on Stanley-Reisner ring of Boolean algebra

э

Corollary (Garsia and Gessel)

Applying $\sum_{\ell \ge 0} u_1^{\ell} \mathbf{ps}_{q_1;\ell+1}$ and the specialization $t_i = q_2^i u_2$ for all i = 0, 1, ..., n to the previous theorem, we obtain

$$\frac{\sum_{w \in \mathfrak{S}_{n}} q_{0}^{\mathrm{inv}(w)} q_{1}^{\mathrm{maj}(w^{-1})} u_{1}^{\mathrm{des}(w^{-1})} q_{2}^{\mathrm{maj}(w)} u_{2}^{\mathrm{des}(w)}}{(u_{1}; q_{1})_{n} (u_{2}; q_{2})_{n}} = \sum_{\ell, k \ge 0} u_{1}^{\ell} u_{2}^{k} \sum_{(\lambda, \mu) \in B(\ell, k)} q_{0}^{\mathrm{inv}(\mu)} q_{1}^{|\lambda|} q_{2}^{|\mu|}.$$
Here $(u; q)_{n} := (1 - u)(1 - uq) \cdots (1 - uq^{n})$ and $\mathbf{ps}_{q;\ell}(F_{\alpha}) := F_{\alpha}(1, q, q^{2}, \dots, q^{\ell-1}, 0, 0, \dots).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Bipartite partitions

• A bipartite partition (λ, μ) satisfies

•
$$\lambda = (\lambda_1 \geq \cdots \geq \lambda_n),$$

•
$$\mu = (\mu_1, \ldots, \mu_n),$$

•
$$\lambda_i = \lambda_{i+1} \Rightarrow \mu_i \ge \mu_{i+1}$$
,

<ロ> <同> <同> < 同> < 同>

э

Bipartite partitions

• A bipartite partition
$$(\lambda, \mu)$$
 satisfies

•
$$\lambda = (\lambda_1 \ge \dots \ge \lambda_n),$$

• $\mu = (\mu_1, \dots, \mu_n),$
• $\lambda_i = \lambda_{i+1} \Rightarrow \mu_i \ge \mu_{i+1},$
• For example, $\begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 4 & 3 & 3 & 2 & 1 & 1 \\ 2 & 5 & 3 & 1 & 4 & 4 \end{pmatrix}$

<ロ> <同> <同> < 同> < 同>

æ

- A bipartite partition (λ, μ) satisfies
 - $\lambda = (\lambda_1 \geq \cdots \geq \lambda_n),$

•
$$\mu = (\mu_1, \ldots, \mu_n),$$

•
$$\lambda_i = \lambda_{i+1} \Rightarrow \mu_i \ge \mu_{i+1}$$
,

- For example, $\begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 4 & 3 & 3 & 2 & 1 & 1 \\ 2 & 5 & 3 & 1 & 4 & 4 \end{pmatrix}$
- B(ℓ, k) consists of bipartite partitions (λ, μ) such that max(λ) ≤ ℓ and max(μ) ≤ k.

• Let W be a finite Coxeter group with Coxeter complex $\Delta(W)$.

イロト イポト イヨト イヨト

3

- Let W be a finite Coxeter group with Coxeter complex $\Delta(W)$.
- Let $H_W(q)$ be the Hecke algebra of W, with generators T_i .

- Let W be a finite Coxeter group with Coxeter complex $\Delta(W)$.
- Let $H_W(q)$ be the Hecke algebra of W, with generators T_i .
- Define an $H_W(q)$ -action on the Stanley-Reisner ring of $\Delta(W)$.

- Let W be a finite Coxeter group with Coxeter complex $\Delta(W)$.
- Let $H_W(q)$ be the Hecke algebra of W, with generators T_i .
- Define an $H_W(q)$ -action on the Stanley-Reisner ring of $\Delta(W)$.
- Define the q-invariant algebra $\mathbb{C}(q)[\Delta(W)]^{H_W(q)}$ as

 $\{f \in \mathbb{C}(q)[\Delta(W)] : T_i f = qf, 1 \le i \le d\}.$

- Let W be a finite Coxeter group with Coxeter complex $\Delta(W)$.
- Let $H_W(q)$ be the Hecke algebra of W, with generators T_i .
- Define an $H_W(q)$ -action on the Stanley-Reisner ring of $\Delta(W)$.
- Define the q-invariant algebra $\mathbb{C}(q)[\Delta(W)]^{H_W(q)}$ as

$$\{f \in \mathbb{C}(q)[\Delta(W)] : T_i f = qf, 1 \le i \le d\}.$$

Theorem (H.)

(i) $\mathbb{C}(q)[\Delta(W)]^{H_W(q)} = \mathbb{C}(q)[\Theta].$ (ii) The $H_W(q)$ -action is Θ -linear. (iii) $\mathbb{C}(q)[\Delta(W)]/(\Theta) \cong H_W(q)$ if q is generic.

• Define a nice $H_n(0)$ -action on the Stanley-Reisner ring of the Tits building $\Delta(G)$ of $G = GL(n, \mathbb{F}_q)$ (replacing multichains with multiflags).

- Define a nice H_n(0)-action on the Stanley-Reisner ring of the Tits building Δ(G) of G = GL(n, F_q) (replacing multichains with multiflags).
- Glue the actions of W and H_W(0) on the Stanley-Reisner ring C[Δ(W)]; for gluing the actions of W and H_W(0) on CW, see Hivert and Thiéry.

- Define a nice H_n(0)-action on the Stanley-Reisner ring of the Tits building Δ(G) of G = GL(n, F_q) (replacing multichains with multiflags).
- Glue the actions of W and H_W(0) on the Stanley-Reisner ring C[Δ(W)]; for gluing the actions of W and H_W(0) on CW, see Hivert and Thiéry.
- Find a character formula for each homogeneous component of C(q)[B_n]/(Θ) as an H_n(q)-module; for C(q)[X]/(e₁,...,e_n) see Adin-Postnikov-Roichman.

Thank you!

Jia Huang 0-Hecke action on Stanley-Reisner ring of Boolean algebra

(4日) (日) (

э