Sherri Harms

Sherri Harms

Sherri Harms

Department Chair, Professor
Computer Science and IT
Otto Olsen (308) 865-8123


  • Ph.D., Comp Sci, U. Missouri
  • M.S., Comp Sci, Iowa State U.
  • B.S., Comp Sci, Buena Vista U.

Research Interests 

  • Data mining
  • Spatio-temporal data mining
  • Predictive modeling for climatic and agricultural decision support systems
  • Intelligent web applications
  • Computer Science Education

Current Courses 

  • CSIS 130 Intro to Computer Science 
  • CSIS 150 Object-Oriented Programming 
  • CSIS 425/825 Database Systems 
  • CSIS 834P IT Teaching Methods 
  • CSIS 441 Artificial Intelligence 

      Course web pages available through the University of Nebraska-Kearney Blackboard Intranet.

1999-present          Association for Computing Machinery (ACM)  
1999-present          Special Interest Group on Knowledge Discovery and Data (SIGKDD) of the ACM 
2004-present          Phi Kappa Phi National Honor Society, UNK Chapter 
2004-present          UNK Graduate Faculty 
2003-present          ACM Symposium on Applied Computing (SAC) data mining track program committee  
1999-present          ResearcHers; Systers Community; Systers-Academia Community 
2003-present          National Education Association,UNK Chapter 

  • Harms, S. Database Systems Course: Service Learning Project, Midwest Instructional Computing Symposium, April 14, 2012.
  • Harms, S. Tadesse,T.,  Wardlow, B. (2009). Algorithm and Feature Selection for VegOut: A Vegetation Condition Prediction Tool, J. Gama et al. (Eds.): Discovery Science 2009, Lecture Notes in Artificial Intelligence 5808, pp. 107–120. (27% acceptance rate, international).
  • Harms, S., Temporal Event Sequence Rule Mining, Data Warehousing and Mining Encyclopedia, 2nd Edition. J. Wang, ed., Idea Group Inc., August 2008, pp. 1098-1102. (35% acceptance rate, international)  
  • Harms, S., Temporal Association Rule Mining in Event Sequences, Data Warehousing and Mining Encyclopedia, J. Wang, ed., Idea Group Inc., 2006, pp. 1098-1102. (60% acceptance rate, international)
  • Tadesse, T., Wilhite, D. A., Hayes, M. J., Harms, S. K., Goddard, S. Discovering Associations between Climatic and Oceanic Parameters to Monitor Drought in Nebraska Using Data-Mining Techniques, Journal of Climate 18 (10), May 2005, pp. 1541-1550. (refereed, international)
  • Tadesse, T., Wilhite, D., Harms, S., Hayes, M., Goddard, S., Drought monitoring using data mining techniquesJournal of Natural Hazards, 33(1), September 2004, pp. 137-159. (refereed, international)
  • Harms, S. K., Deogun, J.,  Sequential Association Rule Mining with Time LagsJournal of Intelligent Information Systems (JIIS).  22 (1), January 2004, pp. 7-22. (4% acceptance rate, international)
  • Li, D., Deogun, J., Harms, S.K., Interpolation Techniques for Geo-spatial Association Rule Miningg,  Lecture Notes in Artificial Intelligence 2639, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Pproceedings of the 9th. International Conference, RSFSDGrC 2003, G. Wang, Q. Liu, Y. Ya, A. Skowron eds., Springer Verlag, October 2003, pp. 573-580. (50% acceptance rate, international)
  • Harms, S. K., Deogun, J., Goddard, S., Building Knowledge Discovery into a Geo-spatial Decision Support System, Pproceedings of the 2003 ACM Symposium on Applied Computing, Melbourne, FL, March 2003, pp. 445-449. (26% acceptance rate, international)
  • Goddard, S., Harms, S., Reichenbach, S., Tadesse, T., Waltman, W.,  Geospatial Decision Support for Drought Risk Management, Communications of the ACM. 46 (1), January 2003, pp. 35-38. (invited, international)
  • Harms, S. K., Deogun, J., Tadesse, T.,  Discovering Sequential Association Rules with Constraints and Time Lags in Multiple Sequences,  Lecture Notes in Artificial Intelligence 2366: Foundations of Intelligent Systems, Proceedings of the 13th  International Symposium on Methodologies for Intelligent Systems, Lyon, France, June 27-29 2002, pp.432-441. (39% acceptance rate, international)
  • Harms, S. K., Saquer, J., Deogun, J., Tadesse, T., Discovering Representative Episodal Association Rules from Event Sequences Using Frequent Closed Episode Sets and Event ConstraintsProceedings of the ICDM '01: The 2001 IEEE International Conference on Data Mining, Silicon Valley, CA, November 29 - December 2, 2001, pp. 603-606. (31% acceptance rate, international)
  • 2011 University of Nebraska Online Worldwide Program Planning Grant: Information Technology BS Online degree completion program, UNK CSIS and UNO School of Interdisciplinary Informatics, S. Harms, lead PI, May 2011.
  • U. of Nebraska Kelly Fund Grant: Technology Transparency in Computer Science (CS), Computer Information Systems(CIS) and Visual Communication and Design (VCD) Curricula, S. Harms and M. Hartman (PIs), Spring 2010.
  • USDA Risk Management Association (RMA) internal grant RMA: Developing Drought Monitoring and Prediction Tools for the Continental U.S. using Data Mining Techniques,  to UNL, subcontract to UNK, Don Wilhite, lead UNL PI; S. Harms, lead UNK PI, $6.1 million, 3 years, awarded Fall 2005. 
  • UNK Collaborative Grant: Information Technology Survey Of Nebraska Rural Communities, A.R. Taylor, lead PI; Spring 2006.
  • National Science Foundation (NSF) Research Experiences for Undergraduates (REU): Knowledge Discovery Based on Geographical Regions, Supplement to the Digital Government grant listed below.  Summer 2004, S. Goddard and Sherri Harms, PIs.
  • National Science Foundation (NSF) Research Experiences for Undergraduates (REU): Knowledge Discovery: From Prototype to Decision Support, Supplement to the Digital Government grant listed below. Summer 2003, S. Goddard and S. Harms, PIs. 
  • USDA Risk Management Association (RMA) internal grant RMA: Risk Assessment and Exposure Analysis on the Agricultural Landscape,   funded Spring 2003 to researchers from multiple agencies (UNL, UNK, UNO, USGS EROS Data Center, USDA NRCS), Steve Goddard, lead PI; $1,000,000, 2 years, Fall 2002. 
  • National Science Foundation (NSF) Digital Government Initiative (DGI): A Geospatial Decision Support System for Drought Risk Management$1,000,000 3 year grant awarded Spring 2001 to University of Nebraska-Lincoln, S. E. Reichenbach, lead PI.